• 제목/요약/키워드: cost matrix

검색결과 642건 처리시간 0.025초

직교배열표를 이용한 이산공간에서의 최적화 알고리즘 개발 (Development of an Optimization Algorithm Using Orthogonal Arrays in Discrete Space)

  • 이정욱;박준성;이권희;박경진
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집C
    • /
    • pp.408-413
    • /
    • 2001
  • The structural optimization is carried out in the continuous design space or discrete design space. Methods for discrete variables such as genetic algorithms are extremely expensive in computational cost. In this research, an iterative optimization algorithm using orthogonal arrays is developed for design in discrete space. An orthogonal array is selected on a discrete design space and levels are selected from candidate values. Matrix experiments with the orthogonal array are conducted. New results of matrix experiments are obtained with penalty functions for constraints. A new design is determined from analysis of means(ANOM). An orthogonal array is defined around the new values and matrix experiments are conducted. The final optimum design is found from iterative process. The suggested algorithm has been applied to various problems such as truss and frame type structures. The results are compared with those from a genetic algorithm and discussed.

  • PDF

Vibration Analysis of the Moving Plates Subjected to the Force of Gravity

  • Jooyong Cho;Kim, Doyeon;Lee, Usik
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.3-10
    • /
    • 2003
  • The use of frequency-dependent dynamic stiffness matrix (or spectral element matrix) in structural dynamics may provide very accurate solutions, while it reduces the number of degrees-of-freedom to improve the computational efficiency and cost problems. Thus, this paper develops a spectral element model for the thin plates moving with constant speed under uniform in-plane tension and gravity. The concept of Kantorovich method and the principle of virtual displacement is used in the frequency-domain to formulate the dynamic stiffness matrix. The present spectral element model is evaluated by comparing its solutions with the exact analytical solutions. The effects of moving speed, in-plane tension and gravity on the natural frequencies of the plate are numerically investigated.

  • PDF

보수.보강에 사용하는 무기계 폴리머 복합재료의 내열성능 (Fire Resistance of Inorganic Polymer Composites for Repair and Rehabilitation)

  • ;정란
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1997년도 가을 학술발표회 논문집
    • /
    • pp.647-652
    • /
    • 1997
  • Repair and rehabilitation of existing structures is becoming a major part of construction, both in the industrially developed and developing countries. Advanced high strength composites are being utilized more and more for these applications because they are much stronger than steel, non-corrosive, and light. The light weight reduces the construction cost and time sustantially. The fibers are normally made of aramid, carbon, or glass and the binders are typically epoxies or esters. One major disadvantage of these composites is the vulnerability to fire. In most instance, the temperature cannot exceed $300^{\cire}C$. Since carbon and glass can substain high temperatures, an inorganic polymer is being evaluated for use as a matrix. The matrix can sustain more than $1000^{\cire}C$. The results reported in this paper deal with the mechanical properties of carbon composites made with the inorganic polymer and the behavior strengthened reinforced concrete beams. The results indicate that the new matrix can be successfully utilized for a number of applications.

  • PDF

구속연산자에 의한 보정 시스템의 관측성에 관한 연구 (Study on the Observability of Calibration System with a Constraint Oprerator)

  • 이민기;김태성;박근우
    • 대한기계학회논문집A
    • /
    • 제27권4호
    • /
    • pp.647-655
    • /
    • 2003
  • This paper studies the observability of calibration system with a constraint movement by a constraint operator. The calibration system with the constraint movement need only simple sensing device to check whether the constraint movements are completed within an established range. However, it yields the concern about the poor parameter observability due to the constraint movements. This paper uses the QR-decomposition to find the optimal calibration configurations maximizing the linear independence of rows of a observation matrix. The number of identifiable parameters are examined by the rank of the observation matrix, which represents the parameter observability. The method is applied to a parallel typed machining center and the calibration results are presented. These results verify that the calibration system with low-cost indicators and simple planar table is accurate as well as reliable.

이상화 구조요소법에 의한 골조구조물의 최종강도해석에 관한 연구 (A Study on the Ultimate Strength Analysis of Frame Structures by Idealized Structural Unit Method)

  • 백점기;임화규
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1990년도 가을 학술발표회 논문집
    • /
    • pp.28-33
    • /
    • 1990
  • This paper presents an efficient and accurate method for nonlinear analysis of frame structures by idealized structural unit method. The main idea behind the present method is to minimize the cost of the computational effort by reducing the number of unknowns. An explicit form of the tangential elastic stiffness matrix of the element is derived by using updated Lagrangian approach. An ultimate limit state of the element is judged on the basis of the formation of a plastic hinge mechanism. The elasto-plastic stiffness matrix and the post-ultimate stiffness matrix of the element are formulated by plastic node method. A comparison between the present method is very efficient and accurate because the computing time required is very small while giving the accurate solution.

  • PDF

유전자 알고리즘을 이용한 매트릭스조직의 객체지향개발 프로젝트 스케줄링 (Project Scheduling for Object-Oriented Development in Matrix Organization)

  • 이건호;김은진
    • 대한안전경영과학회지
    • /
    • 제9권5호
    • /
    • pp.67-78
    • /
    • 2007
  • This paper discusses a scheduling problem on object-oriented developments over multiple teams with limited resources in matrix organization. The objective of the problem is to minimize the makespan of overall projects. There are tangible and intangible advantages such as efficient resource share, improvement of productivity, development efforts and cost reduction, etc. by dispatching resources properly to the development teams. Traditionally, the project scheduling has been done with a manager's intuition or heuristic. We present a scheduling model with illustrative examples, stochastic search approach, and apply a variety of problems generated randomly to the approach. The results are analysed.

장력을 받는 이동 평판이 갖는 진동의 스펙트럴 요소해석 (Spectral Element Analysis of the Vibrations of Moving Plates Subjected to Axial Tension)

  • 조주용;김주홍;이우식;박상덕
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.192-199
    • /
    • 2002
  • The use of frequency-dependent dynamic stiffness matrix (or spectral element matrix) in structural dynamics may provide very accurate solutions, while it reduces the number of degrees-of-freedom to improve the computational efficiency and cost problems. Thus, this paper develops a spectral element model for the thin plates moving with constant speed under uniform in-plane tension. The concept of Kantorovich method is used in the frequency-domain to formulate the dynamic stiffness matrix. The present spectral element model is evaluated by comparing its solutions with the exact analytical solutions. The effects of moving speed and in-plane tension on the flexural wave dispersion characteristics and natural frequencies of the plate are numerically investigated.

  • PDF

One-Cycle Control Strategy with Active Damping for AC-DC Matrix Converter

  • Liu, Xiao;Zhang, Qingfan;Hou, Dianli
    • Journal of Power Electronics
    • /
    • 제14권4호
    • /
    • pp.778-787
    • /
    • 2014
  • This study presents an input filter resonance mitigation method for an AC-DC matrix converter. This method combines the advantages of the one-cycle control strategy and the active damping technique. Unnecessary sensors are removed, and system cost is reduced by employing the grid-side input currents as feedback to damp out LC resonance. A model that includes the proposed method and the input filter is established with consideration of the delay caused by the actual controller. A zero-pole map is employed to analyze model stability and to investigate virtual resistor parameter design principles. Based on a double closed-loop control scheme, the one-cycle control strategy does not require any complex modulation index control. Thus, this strategy can be more easily implemented than traditional space vector-based methods. Experimental results demonstrate the veracity of theoretical analysis and the feasibility of the proposed approach.

Mixed matrix membranes for dye removal

  • Evrim Celik-Madenli;Dilara Kesiktas
    • Membrane and Water Treatment
    • /
    • 제14권4호
    • /
    • pp.175-180
    • /
    • 2023
  • Mixed matrix membranes (MMMs) can be a promising alternative for the solution of dye removal from coloured effluents. Polymeric membranes are widely used due to their good film-forming ability, flexibility, separation properties, and cost. However, they have low mechanical, chemical, and thermal resistances. Moreover, the fouling of polymeric membranes is high because of their hydrophobic nature. Hence, there is an increasing interest in organic-inorganic hybrid membranes as a new-generation membrane material. It has been shown that carbon nanotubes have the potential to increase the material properties of polymers with their low density, high strength, hardness, and exceptional aspect ratio. In this work, carbon nanotubes blended MMMs were prepared and methyl orange removal efficiency of them was investigated. Compared to the bare membranes, MMMs showed not only increased hydrophilicity, water content, and pure water flux but also increased methyl orange rejection and flux recovery

전단빌딩의 강성행렬 및 부재의 강성추정을 위한 부분공간 시스템 확인기법에서의 행켈행렬의 크기 결정 (Determining the Size of a Hankel Matrix in Subspace System Identification for Estimating the Stiffness Matrix and Flexural Rigidities of a Shear Building)

  • 박승근;박현우
    • 한국전산구조공학회논문집
    • /
    • 제26권2호
    • /
    • pp.99-112
    • /
    • 2013
  • 이 논문은 부분공간 시스템 확인기법을 이용하여 전단빌딩의 강성행렬과 부재의 강성을 추정하는 기법을 소개한다. 시스템 행렬은 입력-출력 데이터로 구성된 행켈행렬을 LQ 분해와 특이치 분해를 통해 추정한다. 추정된 시스템 행렬은 닮음 변환을 통해 실제 좌표축으로 변환하고, 변환된 시스템 행렬로부터 강성행렬을 계산한다. 추정된 강성행렬의 정확성과 안정성은 행켈행렬의 크기에 따라 변한다. 전단빌딩의 기저 유한요소 모델을 이용하여 행켈행렬의 크기에 따른 강성행렬의 추정 오차 곡선을 구한다. 오차 곡선을 이용하여 목표 정확도 수준에 부합하는 행켈행렬의 크기들을 결정한다. 이렇게 선택된 행렬의 크기들 중에서 부분공간 시스템 확인의 계산비용을 고려하여 보다 적절한 행렬의 크기를 결정할 수 있다. 결정된 크기의 행켈행렬을 이용하여 강성행렬을 추정하고 추정된 강성행렬로부터 부재의 강성을 추정한다. 제안된 방법을 손상 전후의 5층 전단빌딩 수치 예제에 적용하여 타당성을 검증한다.