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Vibration Analysis of the Moving Plates Subjected to the Force of Gravity

Jooyong Cho’  DoyeonKim®  Usik Lee”

ABSTRACT

The use of frequency-dependent dynamic stiffness matrix (or spectral element matrix) in structural dynamics may provide very accu-
rate solutions, while it reduces the number of degrees-of-freedom to improve the computational efficiency and cost problems. Thus, this
paper develops a spectral element model for the thin plates moving with constant speed under uniform in-plane tension and gravity. The
concept of Kantorovich method and the principle of virtual displacement is used in the frequency-domain to formulate the dynamic
stiffness matrix. The present spectral element model is evaluated by comparing its solutions with the exact analytical solutions. The ef-
fects of moving speed, in-plane tension and gravity on the natural frequencies of the plate are numerically investigated.

1. INTRODUCTION

‘Axially moving plates may experience severe vibrations above a critical speed to result in structural failures. Examples of such sys-
tems are the high speed band saw, magnetic and paper tapes, paper webs, films, wide moving bands and belts, cooling tower strips and
the like. An extensive literature review on axially moving materials is given in reference™. Though there have been so many publications
on axially moving one-dimensional structures such as strings and beams, there is relatively a small number of publications on the axially
moving plates which are subjected to tensile forces in the transport direction.

In 1968, Soler® used a simple bending-torsion plate model for the band moving with constant speed. Ulsoy and Mote® is the first
who have studied the vibration of a moving plate as a model of a wide bandsaw blade by using the classical Ritz method and finite ele-
ment-Ritz method. Lengoc and Mccallion® applied the extended Galerkin method to the plate model by Ulsoy and Mote® and investi-
gate effects of in-plane stresses on the natural frequencies. Lin and Mote™ used the von Karman nonlinear plate theory to investigate the
large equilibrium displacement and stress distribution of a web under transverse loading. Later on, Lin® investigated the stability of a
moving plate with two simply supported and two free edges by using the canonical form of the equations of motion. Wang® developed a
mixed finite element formulation for 2 moving orthotropic plate based on the Mindtin-Reissner plate model. Damaren and Langoc®
applied the Rayleigh-Ritz method to formulate the discrete-parameter motion equations for active control applications.

The vibration of plates has been a subject of considerable research in the structural dynamics community. Because the analytical solu-
tion is not available in a closed form for the plates that do not have at least two parallel edges simply supported®'?, thus the approximate
methods have been widely used: Rayleigh-Ritz method (RRM)"**®), Kantorovich method"*?”, finite element method (FEM)®, finite
strip method (FSM)®?, and the spectral element method (SEMY®®,

The RRM is one of the most commonly used methods in free vibration analysis of plates. The accuracy of RRM strongly depends on
the shape functions used in the analysis. In the literature, the various shape functions have been proposed in the literature. However, Bhat
et al "9 showed that a Rayleigh-type assumption of shape functions, even with an optimizing exponent, will not give very good
results for a plate with some edges free.

In the Kantorovich method, the displacements of a plate are described by the functions given as the products of assumed shape func-
tions and unknown functions, which reduces the partial differential equations of motion to the ordinary differential equations for un-
known functions. The assumed shape functions have to satisfy the boundary conditions at two parallel edges in one direction. In contrast
to FSM, the unknown functions are determined to satisfy the boundary conditions at two parallel edges in the other direction by solving
the reduced ordinary differential equations in an analytical way. Accordingly, the conventional Kantorovich method is not a member of
element methods such as FEM and FSM.

The FEM is a representative element method, in which the displacements of a finite element are described by using local, piecewise
continuous polynomial functions. The FEM is certainly an extremely versatile and powerful technique widely used for solving diverse
boundary and initial value problems. However, it requires very fine meshes to improve the solutions and accordingly a very large mem-
ory. It is well known that the FEM solutions become increasingly inaccurate as the frequency increases.
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The FSM is very similar to the Kantorovich method in philosophy, but can be considered as a special form of FEM. In FSM, the prob
lem domain is divided into strip elements and the displacements of a strip element are described by the functions, which are given as
products of trigonometrical/hyperbolic series and polynomials. The series have to satisfy a priori boundary conditions at the end of the
strips. Therefore, FSM is between FEM and RM. The memory required for FSM is usually much smaller than for FEM.

The SEM is a member of element methods. Contrary to the conventional FEM and FSM, the frequency-dependent dynamic stiffness
matrix (often called ‘spectral element matrix’ in the literature) is used in SEM®®™. Thus, it is known to provide very accurate solutions
with using only a small number of degrees-of-freedom (DOF). It is quite straightforward to apply the SEM to one-dimensional structures.
However, for the plate structures, the application has been limited to Levy-type plates because it is not easy to derive the exact dynamic
stiffness mafrix for non-Levy-type plates.

The purpose of this study is to formulate the spectral element model for the thin plates moving with constant speed under gravity and
uniform in-plane tension in the transport direction. The concept of Kantorovich method will be used in part to formulate the approximate
dynamic stiffhess matrix for the present model and the principle of virtual displacement will be used to formulate the dynamic stiffness
matrices for constant speed, in-plane tension and gravity.

2. EQUATION OF MOTION

Consider a rectangular thin plate moving with constant speed ¢ in the opposite direction of gravitation, as shown in Fig. 1.
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Fig.1 An axially moving plate under in-plane tension and gravity.

The plate has the length L, width b, and thickness 4 in the x, y, z-directions, respectively. The material properties of the plate are the mass
density p, Young’s modulus E, and Poisson’s ration v: The plate has the free boundary conditionsony=0andy = b.

The equation of motion is
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where w(xy1) is the transverse displacement, D = £k /{12(1- v*)) is the plate rigidity, o is the mass density per unit volume, N, is
the in-plane tension in the x-direction measured per unit width, g is the acceleration of gravity and p(x.,/) is the external force distribution
normal to the plate. A, and ¥, denote the bending moment and shear force specified on the boundaries atx = @and x= L.

and the boundary conditionsonx=0andx=L,
V.=V, o w=w, M =M_ or =0 2

ony=0andy=b,
Vy = 0 and Al'v =0 (3)



In the above equations, V* is the bi-harmonic operator in rectangular coordinates. ¥, and V, are the resultant Kirchhoff effective shear
forces per unit length in the y- and x-direction, and M, and M, are the resultant bending moments per unit length in the y- and x~direction,
respectively. They are related to the transverse displacement as
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3. SPECTRALELEMENT FORMULATION

The free vibration response of the plate can be written in the spectral form
N .
w(x, y,0) = ) W, (x,y)e'" (5)
n=l

where I, are the spectral components corresponding to the discrete frequencies @, = 27zm/ T . N denotes the number of spectral com-
ponents to be taken into account in the analysis. Substituting Eq. (5) into Eq. (1) gives
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By substituting Eq. (5) into Eq. (4), the resultant shear forces and moments can be written as

V. (x,y,t)= ZV (s9)e™" , ¥, (e,,0)= Z v, (x,y)e™
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The general solution of Eq. (6) is assumed in the form
()= 3 X, )1 0) ®

where Y(y) (r=1,2, ..., M) are the known functions chosen a priori, and X,,. are the unknown functions to be analytically determined. In
the present study, the elgenﬁmctxons of the free-free Bemoulli-Euler beam (simply, beam functions) are chosen for ¥{x), which satisty
the following orthogonality conditions®”:
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The beam functions ¥, (m = » M) cannot exactly satisfy the free-free plate boundary conditions (ie., Eq. 12) by themselves,.
Thus, for chosen ¥, the funcuonsX should be determined to satisfy
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Substituting Eq. (9) into Eq. (6) and multiplying by ¥,,(x), and integrating from y = 0'to y = b by use of the integral by parts yield
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Substituting Eq. (11) into Eq. (12) to obtain
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Assuming thexin &, tobe x, , the center of element, the solution of Eq. (14) can be obtained in the form
an (x)= allmleik"dx + a"mzeik"’zx + anm3eik"~ll + a"m4e”""“x = [Enm (x)]{anm} (16)
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InEq. (16), ki (i= 1,2, 3,4) are the wavenumbers determined from the following dispersion relation
k‘ + amk:m +ﬂnm knm + 7 0 (18)

The constants g, (=1, 2, 3, 4) are determined to satisfy the boundary conditions onx = 0 andx = L. Substituting Eq. (16) into Eq. (9)
gives the general solutions ¥,
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The spectral generalized displacements d,, (r=1,2,. .., M) are defined by

{dn}T ={Wn(0’y) ®n(0’y) W”(L,y) ®,,(L,)’)} (20)
By multiplying Eq. (20) by Y,{x), integrating from y = 0 to y = b, and using Eqgs. (10), the spectral generalized displacements can be
obtained

m (0’ y)
b b Pr:m (0’ y)

L {a}v.ay=1a, la.} where, [4,,]= Io “(Ly) Y.dy 21
»)

n’m (L’

]

{d,,}

~



thus,
{a,.1=[4,1"4,,} ©22)
Substituting Eq. (22) into Eq. (19) gives
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where, [N NEA y)] is the frequency-dependent dynamic shape function.
The weak form of Eq. (6) can be obtained from
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By taking the integral by parts and then applying the boundary conditions on y= 0 and y= b, one may obtain
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where the following definitions are used.
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Substituting Eq. (23) into Eq. (25) yields
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From Eq. (27), thus one may readily obtain

[s., la, }={r.} (28)
where, [Sm ] is the dynamic stiffness matrix for the mode ¥, (y) given by
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and { S } is the nodal force vector defined by
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4. NUMERICAL EXAMPLES AND DISCUSSION
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For numerical illustrations, the rectangular thin plate shown in Fig. 1 is considered. The material properties of the plate are the
Young’s modulus £ = 200 GPa, Poisson’s ratio v=0.333, and the mass density p= 7800 kg/n?’. The plate thickness, width, and length
are h=0003 m, b= 1 m, and L = 10 m, respectively. The two parallel edges on x = 0 m, 10 m are simply supported and the other two
parallel edgesony=0m, 1 mare free.

To evaluate the present models, it is assumed that the plate is not axially moving for the time being, but subjected to uniform tension
N, =6x10" N/m. In Table 1, the representative ten natural frequencies obtained by the present SEM models are compared with the exact
analytical results from Blevins “” as well as with the FEM results obtained by using the ACM plate element model ),

Table 1. Natural frequencies for the stationary classical plate subjected to inplane tension without gravity

Mode FEM Analytical SEM
(xy) 1x15 2x 30 3 x 45 4 x 60 5x75 | (Blevins'®)
1(1,1) 1.442 1,673 1.685 1.687 1.688 1.688 1.688
2(1,2) 1.779 1.769 1.791 1.796 1.797 1.799 1.799
32 1) 2.906 3.348 3.371 3.376 3.377 3.378 3.378
4(2,2) 3.559 3.539 3.584 3.594 3597 3.599 3.599
5(3,1) 4.404 5.026 5.061 5.068 5.070 5.071 5.072
10 (5, 2) 8.928 8.876 8.991 9.014 9.021 9.027 9.028
12(6,2) | 10.728 10.669 10.808 10.835 10.844 10.850 10.853
16 (8, 2) 14.031 14.286 14.474 14511 14.522 14.530 14.535




Table 2. Natural frequencies for the moving plate subjected to in-plane tension and gravity (c =3 m/s)

FEM
Mode SEM
3 x45 4 x 60
(x.y)
Without Gravity With Gravity Without Gravity With Gravity Without Gravity With Gravity

1(1,1) 1.674 1.675 1.677 1.678 1.682 1.707

2(1,2) 1.781 1.783 1.786 1.818 1.793 1.816

3(2,1) 3.362 3.362 3.366 3.367 3.366 3.415

4(2,2) 3.575 3.576 3.585 3.588 3.588 3.633

5(3,1) 5.050 5.051 5.057 5.059 5.055 5.127

6 (3, 2) 5.370 5.371 5.384 5.384 5.386 5.454

7(4,1) 6.742 6.744 6.751 6.752 6.748 6.845

8(4,2) 7.170 71472 7.188 7.189 7.190 7.280

9(5,1) 8.442 8.444 8.453 8.454 8.450 8.569
10 (5, 2) 8.976 8.979 8.999 9.000 9.001 9.113

Compared with the FEM results, Table 1 also shows that the SEM model provides very competitive results in spite of using only one
finite element. The FEM model is found to require more than about 375 finite elements to achieve the accuracy of the natural frequencies
by the present SEM model.

Table 2 shows the natural frequency dependence of the moving speed of plate ¢ and the force of gravity g. For a fixed moving speed
and in-plane tension of plate, in general, the natural frequencies of gravity effect are increased compared with zero gravity condition.

5. CONCLUSIONS

This paper introduces a spectral element mode! for the thin plates, which are moving with constant speed under gravity and uniform
in-plane tension. The concept of Kantorovich method is used to formulate the dynamic stiffness matrix and the principle of virtual dis-
placement is used to formulate the dynamic shape function and dynamic stiffness matrices. The present SEM is found to provide very
satisfactory natural frequencies, when compared with FEM.

The effect of moving speed, in-plane tension and gravity on the natural frequencies is numerically investigated.

REFERENCES

1. Wickert, J. A. and Mote, C, D., Jr,, “Current Research on the Vibration and Stability of Axially-Moving Materials,” The Shock and
Vibration Digest, Vol. 20, No. 5, 1988, pp. 3-13.

2. Soler, A. 1, “Vibrations and Stability of a Moving Band,” Jowrnal of Franklin Institute, Vol. 286, No. 4, 1968, pp. 295-307.

3. Ulsoy, A. G and Mote, C. D, Jr.,, “Vibration of Wide Band Saw Blades,” Jowrnal of Engineering for Industry, Vol. 104, 1982, pp.
71-78.

4. Lengoc, L. and McCallion, H., “Wide Bandsaw Blade Under Cutting Conditions, Part I: Vibration of a Plate Moving in Its Plane
while Subjected to Tangential Edge Loading," Journal of Sound and Vibration, Vol. 186, No. 1, 1995, pp. 125-142.

5. Lin, C. C. and Mote, C. D,, Jr,, “Equilibrium Displacement and Stress Distribution in a Two-Dimensional, axially Moving Web
Under Transverse Loading,” Journal of Applied Mechanics, Vol. 62, 1995, pp. 772-779.

6. Lin, C. C., “Stability and Vibration Characteristics of Axially Moving Plates,” International Journal of Solids and Structures, Vol. 34,
No. 24, 1997, pp. 3179-3190.

7. Wang, X, “Numerical Analysis of Moving Orthotropic Thin Plates,” Computers & Structures, Vol. 70, 1999, pp. 467-486.

8. Damaren, C. J. and Lengoc, L., “Robust Active Vibration Control of a Bandsaw Blade,” Journal of Vibration and Acoustics, Vol.
122, 2000, pp. 69-76.



10.
11.
12.
13.
14.

15.

16.

17.
18.
19.
20.
21

22

28

29.

30.

3L
32.

33.

34.

Leissa, A. W., Vibration of Plates, NASA SP-160, NASA, Washington, D. C., 1969.

Blevins, R. D., Formulas for Natural Frequency and Mode Shape, Van Nostrand Reinhold Company, New York, 1979.

Gorman, D. J., Free Vibration Analysis of Rectangular Plates, Elsevier North Holland, New York, 1982.

Young, D., “Vibration of Rectangular Plates by the Ritz Method,” Journal of Applied Mechanics, Vol. 17, No. 4, 1950, pp. 448-453.
Bassily, 8. F. and Dickinson, S. M., “On the Use of Beam Functions for Problems of Plates Involving Free Edges,” Jowrnal of Ap-
Plied Mechanics, Vol. 42, 1975, pp. 858-864.

Bhat, R. B., “Natural Frequencies of Rectangular Plates Using Characteristic Orthogonal Polynomials in Rayleigh-Ritz Method,”
Journal of Sound and Vibration, Vol. 102, No. 4, 1985, pp. 493-499.

Dickinson, S. M. and Di Blasio, A., “On the Use of Orthogonal Polynomials in the Rayleigh-Ritz Method for the Study of the Flex-
ural Vibration and Buckling of Isotropic and Orthotropic Rectangular Plates,” Journal of Sound and Vibration, Vol. 108, No. 1, 1986,
pp. 51-62.

Bhat, R. B., Laura, P. A. A, Gutierez, R. G, Corinez, V. H. and Sanzi, H. C., “Numerical Experiments on the Determination of
Natural Frequencies of Transverse Vibrations of Rectangular Plates, of Non-Uniform Thickness, “ Jowrnal of Sound and Vibration,
Vol. 138, No. 2, 1990, pp. 205-219.

Zhou, D., “Natural Frequencies of Rectangular Plates Using a Set of Static Bearn Functions in Rayleigh-Ritz Method,” Jowenal of
Sound and Vibration, Vol. 189, No. 1, 1996, pp. 81-87.

Reddy, J. N,, Theory and Analysis of Elastic Plates, Taylor & Francis, London, 1999.

Kantorovich L. V. and Krylov, V. L, Approximate Methods of Higher Analysis, Interscience Publishers, New York, 1958.

Kerr, A. D., “An extended Kantorovich method for the solution of eigenvalue problems,” International Journal of Solids and Struc-
tures, Vol. 5, 1969, pp. 559-572.

Yuan, S. and Jin, Y., “Computation of Elastic Buckling Loads of Rectangular Thin Plates Using the Extended Kantorovich
Method,” Computers & Structures, Vol. 66, No, 6, 1998, pp. 861-867.

Jones, R. and Milne, B. J., “Application of the Extended Kantorovich Method to the Vibration of Clamped Rectangular Plates,”
Journal of Sound and Vibration, Vol. 45, 1976, pp. 309-316.

. Bhat, R. B, Singh, J. and Mundkur, G, “Plate Characteristic Functions and Natural Frequencies of Vibration of Plates by Iterative

Reduction of Partial Differential Equation,” Journal of Vibration and Acoustics, Vol. 115, 1993, pp. 177-181.

. Bercin, A. N, “Free Vibration Solution for Clamped Orthotropic Plates Using the Kantorovich Method,” Jowrnal of Sound and

Vibration, Vol. 196, No. 2, 1996, pp. 243-247.

. Zienkiewicz, O. C., The Finite Element Method, 3rd., McGraw-Hill, London, 1977.
. Cheung, Y. K, Finite Strip Method in Structural Analysis, Pergamon Press, Oxford, 1976.
. Cocchi, G M., “The Finite Strip Method in the Analysis of thin Plate Structures with Various Edge Restrains,” Computers & Struc-

tures, Vol. 61, No. 2, 1996, pp. 303-313.

Friedrich, R., “Finite Strip Method: 30 Years A Bibliography (1968-1998),” Engineering Computations, Vol. 17, No. 1, 2000, pp.
92-111.

Cheung, Y. K. and Tham, L. G, “A Review of Finite Strip Method,” Progress in Sructural Engineering and Materials, Vol. 2, No. 3,
pp- 359-368.

Doyle, J. F., Wave Propagation in Structures: Spectral Analysis Using Fast Discrete Fourier Transforms, 2nd Edition, Springer-
Verlag, New York, 1997.

Bercin, A. N., “Eigenfrequencies of Rectangular Plate Assemblies,” Computers & Structures, Vol. 65, No. 5, 1997, pp. 703-711.
Lee, U. and Lee, J., “Spectral-Element Method for Levy-Type Plates Subject to Dynamic Loads,” Journal of Engineering Mechan-
ics, Vol. 125, No. 2, 1999, pp. 243-247.

Lee, U, Kim, J. and Leung, A. Y. T, “Spectral Element Method in Structural Dynamics,” The Shock and Vibration Digest, Vol. 32,
No. 6,2000, pp. 451-465.

Petyt, M., Introduction to Finite Element Vibration Analysis, Cambridge University Press, Cambridge, 1990.

_10_



