Browse > Article
http://dx.doi.org/10.6113/JPE.2014.14.4.778

One-Cycle Control Strategy with Active Damping for AC-DC Matrix Converter  

Liu, Xiao (State Grid of China Technology College)
Zhang, Qingfan (School of Control Science and Engineering, Shandong University)
Hou, Dianli (School of Control Science and Engineering, Shandong University)
Publication Information
Journal of Power Electronics / v.14, no.4, 2014 , pp. 778-787 More about this Journal
Abstract
This study presents an input filter resonance mitigation method for an AC-DC matrix converter. This method combines the advantages of the one-cycle control strategy and the active damping technique. Unnecessary sensors are removed, and system cost is reduced by employing the grid-side input currents as feedback to damp out LC resonance. A model that includes the proposed method and the input filter is established with consideration of the delay caused by the actual controller. A zero-pole map is employed to analyze model stability and to investigate virtual resistor parameter design principles. Based on a double closed-loop control scheme, the one-cycle control strategy does not require any complex modulation index control. Thus, this strategy can be more easily implemented than traditional space vector-based methods. Experimental results demonstrate the veracity of theoretical analysis and the feasibility of the proposed approach.
Keywords
Active Damping; Matrix Converter; One-Cycle Control; Resonance Mitigation;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 F. R. Liu, B. Wu, N. R. Zargari, and M. Pande, "Inductor current feedback control based active damping for high power PWM current source rectifier," in Proc. EEE IEMDC, pp. 475-479, 2011.
2 X. Liu, Q. F. Zhang, D. L. Hou, and S. Y. Wang, "Improved space vector modulation strategy for AC-DC matrix converters," Journal of Power Electronics, Vol. 13, No. 4, pp. 647-655, Jun. 2013.   DOI
3 F. Bradaschia, M. C. Cavalcanti, F. Neves, and H. de Souza, "A Modulation technique to reduce switching losses in matrix converters," IEEE Trans. Ind. Electron., Vol. 56, No. 4, pp. 1186-1195, Apr. 2009.   DOI
4 R. Vargas, U. Ammann, and J. Rodriguez, "Predictive approach to increase efficiency and reduce switching losses on matrix converters," IEEE Trans. Power Electron., Vol. 24, No. 4, pp. 894-902, Apr. 2009.   DOI   ScienceOn
5 R. Vargas, U. Ammann, B. Hudoffsky, J. Rodriguez, and P. Wheeler, "Predictive torque control of an induction machine fed by a matrix converter with reactive input power control," IEEE Trans. Power Electron., Vol. 25, No. 6, pp. 1426-1438, Jun. 2010.   DOI
6 X. Liu, Q. F. Zhang, and D. L. Hou, "Sliding mode variable structure control of matrix rectifiers," Trans. of China Electro technical Society, Vol. 28, No. 4, pp. 149-156, Apr., 2013.
7 K. M. Smedley and S. Cuk, "One cycle control of switching converter," IEEE Trans. Power Electron., Vol. 10, No. 6, pp. 888-896, Nov. 1995.
8 A. Sadik, Z. Hussain, and P. Shea, "A single-bit digital DC-blocker using ternary filtering," in Proc. of IEEE TENCON, pp. 1-6, 2005.
9 Y. W. Li, B. Wu, N. R. Zargari, J. C. Wiseman, and D. Xu, "Damping of PWM current-source rectifier using a hybrid combination approach," IEEE Trans. Power Electron., Vol. 22, No. 4, pp. 1383-1393, Jul. 2007.   DOI   ScienceOn
10 H. Wilfried and Z. Marcus, "Multi-Step commutation and control policies for matrix converters," Journal of Power Electronics, Vol. 3, No. 1, pp. 24-32, Jan. 2003.
11 D. J. Holmes and T. A. Lipo, "Implementation of a controlled rectifier using AC-AC matrix converter theory," IEEE Trans. Power Electron., Vol. 7, No. 1, pp. 240-249, Jun. 1992.   DOI   ScienceOn
12 S. Huseinbegovic, and O. Tanovic, "Matrix converter based AC/DC rectifier," in Proc. of SIBIRCON, pp. 653-658, 2010.
13 D. Casadei, L. Clare, L. Empringham, G. Serra, A. Tani, A. Trentin, P. Wheeler, and L. Zarri, "Large-signal model for the stability analysis of matrix converter," IEEE Trans. Ind. Electron., Vol. 54, No. 2, pp. 939-950, Apr. 2007.   DOI
14 D. Casadei, G. Serra, A. Tani, A. Trentin, and L. Zarri, "Theoretical and experimental investigation on the stability of matrix converters," IEEE Trans. Ind. Electron., Vol. 52, No. 5, pp. 1409-1419, Oct. 2005.   DOI
15 M. Su, Y. Sun, H. S. Qin, and T. S. Zhang, "An multi-objective optimized design of input filter of matrix converter," China Society for Electrical Engineering, Vol. 27, No. 1, pp. 70-75, Jan. 2007.
16 D. N. Zmood and D. G. Holmes, "Improved voltage regulation for current-source inverters," IEEE Trans. Ind. Appli., Vol. 37, No. 4, pp. 1028-1036, Jul./Aug. 2001.   DOI   ScienceOn
17 S. A. S. Grogan, D. G. Holmes, and B. P. McGrath, "High performance voltage regulation of current source inverters," in Proc. IEEE APEC, pp. 873-880, 2010.
18 J. C. Wiseman and B. Wu, "Active damping control of a high-power PWM current-source rectifier for line-current THD reduction," IEEE Trans. Ind. Electron., Vol. 52, No 3, pp. 758-764, Jun. 2005.   DOI
19 M. Rivera, C. Rojas, J. Rodriguez, P. Wheeler, B. Wu, and J. R. Espinoza, "Predictive current control with input filter resonance mitigation for a direct matrix converter," IEEE Trans. Power Electron., Vol. 26, No 10, pp. 2794-2803, Oct. 2011.   DOI
20 Y. W. Li, B. Wu, N. R. Zagari, J. C. Wiseman, and D. Xu, "Damping of PWM current-source rectifier using a hybrid combination approach," IEEE Trans. Power Electron., Vol. 22, No 4, pp. 1383-1393, Jul. 2007.   DOI   ScienceOn