• Title/Summary/Keyword: coordinate measurement

Search Result 384, Processing Time 0.027 seconds

Application Method of Site Calibration Function of Network RTK Survey for Local Coordinate System Result Analysis (지역좌표계 성과분석을 위한 네트워크 RTK측량 사이트 캘리브레이션 기능 적용 방안)

  • Shin, Chang Soo;Choi, Yun Soo;Park, Moon Jae
    • Journal of Cadastre & Land InformatiX
    • /
    • v.47 no.1
    • /
    • pp.95-110
    • /
    • 2017
  • The network RTK surveying has been widely used in the field of cadastral surveys in recent years, and its use is gradually expanding. As a result of the implementation of GPS static surveys by civilian companies in accordance with the progress of the cadastral surveys and gradual civilian transfer plans and cadastral surveys, there has been an increase in the number of civilian companies performing surveys. In this paper, we describe the process of applying the results of analysis of conformity using the network RTK site calibration function on the local coordinate system to the GPS static surveying of the cadastral reference points in Anyang city. In addition, the measurement results of the network RTK site calibration function and the results of the GPS static surveying network reconciliation in the local coordinate system were compared, and the performance was determined within 0.04m maximum of RMSE(Root Mean Square Error), and further study on the application method is needed.

The Image Position Measurement for the Selected Object out of the Center using the 2 Points Polar Coordinate Transform (2 포인트 극좌표계 변환을 이용한 중심으로부터의 목표물 영상 위치 측정)

  • Seo, Choon Weon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.11
    • /
    • pp.147-155
    • /
    • 2015
  • For the image processing system to be classified the selected object in the nature, the rotation, scale and transition invariant features is to be necessary. There are many investigations to get the information for the object processing system and the log-polar transform which is to be get the invariant feature for the scale and rotation is used. In this paper, we suggested the 2 points polar coordinate transform methods to measure the selected object position out of the center in input image including the centroid method. In this proposed system, the position results of objects are very good, and we obtained the similarity ratio 99~104% for the object coordinate values.

Development of a Golf Putting Result Recording System Using USB Camera (USB 카메라를 이용한 골프 퍼팅 결과 기록 장치의 개발)

  • Kim, Hyung-Sik;Choi, Jin-Seung;Tack, Gye-Rae;Lim, Young-Tae;Yi, Jeong-Han
    • Korean Journal of Applied Biomechanics
    • /
    • v.20 no.2
    • /
    • pp.239-243
    • /
    • 2010
  • The putting stroke accounts for 40~50% of total stroke for a golf rounding and most golfers have difficulties on the puting. Studies for the putting stroke have been conducted by analyzing various factors such as kinematics, kinetics, psychologic and physiologic parameters. A lot of devices were developed to support the studies. However there was no appropriate method to measure the position of the ball quantitatively. In this study, we developed a new measurement system to measure and evaluate the putting result. The developed system uses a USB camera to take the 2-dimensional image of the surface including the hole cup at the center of the image and the ball. The position of the ball is extracted as a set of distance and angle in polar coordinate system. We evaluated the new system with an indoor set-up for putting experiments and the system provided accurate measurement results. The proposed system can be combined with the other measurement systems such as 3D motion capture system and force plate without any restriction.

Correction on Current Measurement Errors for Accurate Flux Estimation of AC Drives at Low Stator Frequency (저속영역에서 교류전동기의 정확한 자속추정을 위한 전류측정오차 보상)

  • Cho, Kyung-Rae;Seok, Jul-Ki
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.12 no.1
    • /
    • pp.65-73
    • /
    • 2007
  • This paper presents an on-line correction method of current measurement errors for a pure-integration-based flux estimation down to 1-Hz stator frequency. An observer-based approach is taken as one possible solution of eliminating the dc offset and the negative sequence component of unbalanced gains in the synchronous coordinate. At the same time, the positive sequence component estimation is performed by creating an error signal between a motor model reference and an estimated q-axis rotor flux established by a permanent magnet (PM) in the synchronous coordinate. The compensator utilizes a PI controller that controls the error signal to zero. The proposed technique further contains a residual error compensator to completely eliminate miscellaneous disturbances in the estimated flux. The developed algorithm has been implemented on a 1.1-kW permanent magnet synchronous motor (PMSM) drive to confirm the effectiveness of the proposed scheme.

Current status and application of Photogrammetry (사진측정기의 동향 및 응용사례)

  • Choi, Jung-Su;Park, Eung-Sik;Kim, Hyung-Wan;Yoon, Yong-Sik
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.6 no.2
    • /
    • pp.80-89
    • /
    • 2008
  • Photogrammetry is a non-direct 3-dimensional coordinate measurement technique using 2-dimensional photographic images. For reconstruction 3-dimensional data from the 2-dimensional photos, photogrammetry uses the fundamental principle of triangulation. Digital photogrammetry solve for the camera location and coordinates simultaneously through the mapping, scaling and bundle processing in software processing. In this paper, several applications for photogrammetry measurement are introduced, such as 'photogrammetric measurement of the gravity deformation of a cassegrain type antenna', 'analysis of photogrammetry data from ISIM mockup', 'underwater photogrammetric verification of nuclear fuel assemblies', 'spacecraft optical bench measurement' and 'spacecraft ground support equipment measurement'.

  • PDF

A study on the on-load torque measurement for three phase induction motor (삼상유도전동기의 부하시 토오크 측정에 관한 연구)

  • 이승원;김은배;황석영;강석윤
    • 전기의세계
    • /
    • v.30 no.11
    • /
    • pp.734-746
    • /
    • 1981
  • This paper suggests on-load torque measurement for 3 phase induction motors by input -voltage and current utilizing symmetric coordinate analysis technique on the basis of the induction motor equivalent circuit. In this paper, two cases are treated with, i.e, one is the case where the motors' exciting current and primary leakage impedance voltage drop are compensated automatically, adopting the ideal wattmeter whose current coil impedance and voltage coil impedance are 0 and .inf. respectively, and the other is the case where non-ideal wattmeter is adopted and the compensation above is made by computation. As a result of the case study, following conclusions are obtained. 1) By proper combination of the error propagation law and the limit of power consumption, the desirable overall measurement error of the apparatus can be obtained on the basis of the inherent errors of CT and PT. 2) The measurement error is larger in current simulation circuit than in voltage simulation circuit. 3) Between the two cases, the latter is more advantageous than the former from the viewpoint of feasibility and the measurement error. 4) As the attachment of Ammeter in the current simulation circuit influences the measurement error considerably, its internal impedance should be large considerably. 5) The larger the consumption power of the apparatus is, the easier the feasibility is.

  • PDF

Acquisition Model for 3D Shape Measurement Data

  • Park, Jong-Sik;Jang, Wang-Jin;Lee, Seong-Beom;Park, Chan-Seok
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.4
    • /
    • pp.16-21
    • /
    • 2008
  • The demand for three-dimensional (3D) shape measurements is increasing in a variety of fields, including the manufacture of molds and dies. The most popular technology for 3D shape measurement is the coordinate measuring machine (CMM) with a contact trigger probe. Although a CMM provides a high degree of accuracy, it is inefficient due to its long measuring time. It also has difficulty measuring soft objects that can be deformed by the touch of the contact probe. In addition, a CMM cannot digitize areas that are difficult to reach, and cannot capture very minute details on the surface of complex parts. For these reasons, optical non-contact measurement techniques are receiving more attention since they eliminate most of the problems associated with contact methods. Laser scanning is emerging as one of the more promising non-contact measurement techniques. This paper describes various acquisition considerations for laser scanning, including the accuracy of the 3D scan data, which depends on the charge-coupled device (CCD) gain and noise. The CCD gain and noise of a 3D laser scanner are varied while keeping the other conditions constant, and the measurement results are compared to the dimensions of a standard model. The experimental results show that a considerable time savings and an optimum degree of accuracy are possible by selecting the proper CCD gain and noise.

Development of an Algorithm for the Vision-Based Surface-Strain Measurment of Large Stamped Parts (비전을 이용한 중.대형 판재성형 제품의 곡면 변형률 측정 알고리듬 개발)

  • 김형종
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.269-272
    • /
    • 1999
  • It is still hard to measure the strain distribution over entire surface of a medium or large-size stamped part even by using an automated strain measurement system. Several methods which enable to enlarge the measurement range without losing accuracy and precision are suggested in this study, The superposition of images having different high-lightened or damaged part each other results in an enhanced image. A new method for constructing the element connectivity from a line-thinned image makes it possible to identify up to 1,000 elements. And the geometry assembling algorithm is proved very efficient in which the whole area to be measured is divided into several parts ; the coordinate transformation between every two adjacent parts is obtained from the concept of the least square error ; and the 3-D shape or strain distribution over the whole surface is assembled,

  • PDF

A study on the diagonal error compensation and squareness measurement of linear motor (리니어 모터의 직각도 측정과 대각선 오차 보정에 관한 연구)

  • Kim J.H.;Lee C.W.;Song J.Y.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.287-288
    • /
    • 2006
  • This paper introduces an approach of method to compensate accuracy error of diagonal direction. The measurement of squareness error is an important parameter in performance test of two axis Linear Motor and this exerts influence on accuracy error of diagonal test. However, previous knowledge management approaches are limited in deviation measurement of optical axis or restrictive elements of diagonal measurements using laser interferometer. But this proposed method calculated diagonal accuracy error which was occurred by squareness error and compensated squareness error using orthogonal correction method of PMAC. From this result, diagonal accuracy error is significantly reduced. This experimental results show that geometric error of squareness error is easily corrected by dynamic coordinate correction.

  • PDF

Compensation of Probe Radius in Measuring Free-Formed Curves and Surfaces

  • Lisheng Li;Jung, Jong-Yun;Lee, Choon-Man;Chung, Won-Jee
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.4 no.3
    • /
    • pp.20-27
    • /
    • 2003
  • Compensation of probe radius is required for accurate measurement in metal working industry. Compensation involves correctly measuring data on the surface in the amount of radius of the touch probe with a Coordinate Measuring Machine (CMM). Mechanical parts with free-formed curves and surfaces are complex enough so that accurate measurement and compensation are indispensable. This paper presents necessary algorithms involved in the compensation of the probe radius for free-formed curves and surfaces. Application of pillar curve is the focus for the compensation.