• Title/Summary/Keyword: conversion gain

Search Result 1,110, Processing Time 0.029 seconds

DIVERGENT SELECTION FOR POSTWEANING FEED CONVERSION IN ANGUS BEEF CATTLE IV. PHENOTYPIC CORRELATIONS BETWEEN BODY MEASUREMENTS AND FEED CONVERSION

  • Park, N.H.;Bishop, M.D.;Davis, M.E.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.7 no.3
    • /
    • pp.435-440
    • /
    • 1994
  • Postweaning performance data were obtained on 401 group fed purebred Angus calves from 24 selected sires (12 high and 12 low feed conversion sires) from 1983 through 1986 at the Northwestern Branch of the Ohio Agricultural Research and Development Center. The objective of this study was to determine the interrelationships between body measurements and 140-d feed conversion (feed/gain) adjusted for maintenance (ADJFC), 140-d feed conversion unadjusted for maintenance (UNADFC) and feed conversion measured until progeny reached 8.89 mm of backfat (FC). Variables measured at the completion of the 140-d postweaning period included hip peight (HH), chest depth (CD), chest width (CW), head width (HDW), head length (HDL), heart girth (HG), muzzle circumference (MC), backfat thickness (BF), length between hooks aod pins (HOPIN) and length between shoulder and hooks (SHHO). Measurements were taken from progeny born from 1983 through 1986 for HH and BF, while others, except chest measurements (CD and CW), which were available only in 1985, were taken from progeny born in 1985 and 1986. Negative phenotypic correlations were found for UNADFC, ADJFC and FC. respectively, with HG (-0.76, -0.65 and -0.85), HOPIN (-0.05, -0.28 and -0.09), HDL (-0.63, -0.66 and -0.57), MC (-0.12, -0.35 and - 0.25), HH (-0.38, -0.29 and -0.001), BF(-0.29, -0.31 and -0.12) and CW (-0.03, -0.35 and -0.58). In general, fatter animals with larger HG, longer HDL and greater MC had better feed conversion.

A Bidirectional Three-level DC-DC Converter with a Wide Voltage Conversion Range for Hybrid Energy Source Electric Vehicles

  • Wang, Ping;Zhao, Chendong;Zhang, Yun;Li, Jing;Gao, Yongping
    • Journal of Power Electronics
    • /
    • v.17 no.2
    • /
    • pp.334-345
    • /
    • 2017
  • In order to meet the increasing needs of the hybrid energy source system for electric vehicles, which demand bidirectional power flow capability with a wide-voltage-conversion range, a bidirectional three-level DC-DC converter and some control strategies for hybrid energy source electric vehicles are proposed. The proposed topology is synthesized from Buck and Boost three-level DC-DC topologies with a high voltage-gain and non-extreme duty cycles, and the bidirectional operation principle is analyzed. In addition, the inductor current ripple can be effectively reduced within the permitted duty cycle range by the coordinated control between the current fluctuation reduction and the non-extreme duty cycles. Furthermore, benefitting from duty cycle disturbance control, series-connected capacitor voltages can also be well balanced, even with the discrepant rise and fall time of power switches and the somewhat unequal capacitances of series-connected capacitors. Finally, experiment results of the bidirectional operations are given to verify the validity and feasibility of the proposed converter and control strategies. It is shown to be suitable for hybrid energy source electric vehicles.

A Wide Voltage-Gain Range Asymmetric H-Bridge Bidirectional DC-DC Converter with a Common Ground for Energy Storage Systems

  • Zhang, Yun;Gao, Yongping;Li, Jing;Sumner, Mark
    • Journal of Power Electronics
    • /
    • v.18 no.2
    • /
    • pp.343-355
    • /
    • 2018
  • A wide-voltage-conversion range bidirectional DC-DC converter is proposed in this paper. The topology is comprised of one typical LC energy storage component and a special common grounded asymmetric H-bridge with four active power switches/anti-parallel diodes. The narrow output PWM voltage is generated from the voltage difference between two normal (wider) output PWM voltages from the asymmetric H-bridge with duty cycles close to 0.5. The equivalent switching frequency of the output PWM voltage is double the actual switching frequency, and a wide step-down/step-up ratio range is achieved. A 300W prototype has been constructed to validate the feasibility and effectiveness of the proposed bidirectional converter between the variable low voltage side (24V~48V) and the constant high voltage side (200V). The slave active power switches allow ZVS turn-on and turn-off without requiring any extra hardware. The maximum conversion efficiency is 94.7% in the step-down mode and 93.5% in the step-up mode. Therefore, the proposed bidirectional topology with a common ground is suitable for energy storage systems such as renewable power generation systems and electric vehicles with a hybrid energy source.

A 3.1 to 5 GHz CMOS Transceiver for DS-UWB Systems

  • Park, Bong-Hyuk;Lee, Kyung-Ai;Hong, Song-Cheol;Choi, Sang-Sung
    • ETRI Journal
    • /
    • v.29 no.4
    • /
    • pp.421-429
    • /
    • 2007
  • This paper presents a direct-conversion CMOS transceiver for fully digital DS-UWB systems. The transceiver includes all of the radio building blocks, such as a T/R switch, a low noise amplifier, an I/Q demodulator, a low pass filter, a variable gain amplifier as a receiver, the same receiver blocks as a transmitter including a phase-locked loop (PLL), and a voltage controlled oscillator (VCO). A single-ended-to-differential converter is implemented in the down-conversion mixer and a differential-to-single-ended converter is implemented in the driver amplifier stage. The chip is fabricated on a 9.0 $mm^2$ die using standard 0.18 ${\mu}m$ CMOS technology and a 64-pin MicroLead Frame package. Experimental results show the total current consumption is 143 mA including the PLL and VCO. The chip has a 3.5 dB receiver gain flatness at the 660 MHz bandwidth. These results indicate that the architecture and circuits are adaptable to the implementation of a wideband, low-power, and high-speed wireless personal area network.

  • PDF

Design and Fabrication of the Frequency Doubler for 24GHz Local Oscillator (24GHz 대역 국부발진기용 주파수 체배기 설계 및 제작)

  • Seo, Gon;Kim, Jang-Gu;Han, Sok-Kyun;Park, Chang-Hyun;Choi, Byung-Hai
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.10a
    • /
    • pp.411-415
    • /
    • 2003
  • In this paper, a reflector type frequency doubler for local oscillator at 24GHz is designed and fabricated with ne71300-N MESFET. Optimum source and load impedances are decided through a multiharmonic load pull simulation technique. A conversion gain ran be improved using the reflector and fundamental and third harmonics are well suppressed with open stub of λ/4 length. Measured results show output power at 0dBm of input power is -3.776dBm, conversion gain 0.736dB, harmonic suppression 41.064dBc, respectively.

  • PDF

Feedback Control using Dual O2 Sensors for Improving the Conversion Efficiency of a Three-way Catalyst in a Heavy-duty CNG Engine (CNG 대형엔진에서 이중 O2 센서를 활용한 피드백 제어를 통한 삼원촉매 정화효율 향상)

  • Yoon, Sungjun;Lee, Junsun;Park, Hyunwook;Lee, Yonggyu;Kim, Changup;Oh, Seungmook
    • Journal of ILASS-Korea
    • /
    • v.24 no.4
    • /
    • pp.163-170
    • /
    • 2019
  • In this study, feedback logic using dual O2 sensor values were developed to increase the purification capability of a three-way catalyst (TWC) in a compressed natural gas (CNG) engine. A heavy-duty inline 6-cylinder engine was used and the CNG was supplied to the engine through a mixer. This study consists of two main parts, namely, the proportional integral (PI) control with a front O2 sensor and the feedback control with dual O2 sensors. In the PI control experiment, effects of various parameters, such as P gain, I gain, and lean delay, on the TWC capability were identified. Based on the results of the PI control experiment, the feedback logic using dual O2 sensor values were developed. In both cases, the nitrogen oxides (NOX) emissions were nearly zero. However, the carbon monoxide (CO) emissions were reduced significant in the feedback logic with dual O2 sensors than in the PI control with the front O2 sensor.

단일 및 복합 생균제의 급여가 육계의 생산성 및 장내 미생물에 미치는 영향

  • 류경선;박홍석;류명선;여영수;김상호
    • Proceedings of the Korea Society of Poultry Science Conference
    • /
    • 2000.11a
    • /
    • pp.63-65
    • /
    • 2000
  • Two experiments were conducted to investigate the effects of feeding single or combined probiotics on performance and intestinal microflora of broiler chicks for five weeks. Diets based on corn and soybean meal contained 21.50, 19.0% CP and 3,100, 3,150 kcal/kg ME for starting and finishing period, respectively. Lactobacillus salvarius isolated from chicks intestine(LSC), Lactobacillus salvarius isolated from piglet(LSP) Bacillus polyfermenticus(BP) were fed with alone and mixed ones at the level of 0.21 and 0.1% in experiment 1 and 2. Three hundred eighty four chicks were randomly assigned to eight treatment with four replicates of 12 chicks each per treatment. Weight gain, feed consumption, feed conversion ratio(FCR) were weekly measured for 5 weeks. The number of intestinal microflora was examined at the end of experiment. There were no significant different weight gain of all treatment in both experiments. Feed consumption were not shown consistency. Chicks fed LSC alone showed the lowest feed conversion ratio of all treatment in experiment 1, but was not consistency in experiment 2. The number of Lactobacillus spp. tended to increase in chicks ileum fed probiotics treatments, whereas it was not consistency in cecum. The number of ileal E. coli was not decreased in BP treatment.

  • PDF

Wideband VHF and UHF RF Front-End Receiver for DVB-H Application

  • Park, Joon-Hong;Kim, Sun-Youl;Ho, Min-Hye;Baek, Dong-Hyun
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.81-85
    • /
    • 2012
  • This paper presents a wideband and low-noise direct conversion front-end receiver supporting VHF and UHFbands simultaneously. The receiver iscomposed of a low-noise amplifier (LNA), a down conversion quadrature mixer, and a frequency divider by 2. The cascode configuration with the resistor feedback is exploited in the LNA to achieve a wide operating bandwidth. Four gainstep modesare employed using a switched resistor bank and a capacitor bank in the signal path to cope with wide dynamic input power range. The verticalbipolar junction transistors are used as the switching elements in the mixer to reduce 1/f noise corner frequency. The proposed front-end receiver fabricated in 0.18 ${\mu}m$ CMOS technology shows very low minimum noise figureof 1.8 dB and third order input intercept pointof -12dBm inthe high-gain mode of 26.5 dBmeasured at 500 MHz.The proposed receiverconsumeslow current of 20 mA from a 1.8 V power supply.

High Conversion Gain and Isolation Characteristic V-band Quadruple Sub-harmonic Mixer (고 변환이득 및 격리 특성의 V-band용 4체배 Sub-harmonic Mixer)

  • Uhm, Won-Young;Sul, Woo-Suk;Han, Hyo-Jong;Kim, Sung-Chan;Lee, Han-Shin;An, Dan;Kim, Sam-Dong;Park, Hyung-Moo;Rhee, Jin-Koo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.40 no.7
    • /
    • pp.293-299
    • /
    • 2003
  • In this paper, we have proposed a high conversion and isolation characteristic V-band quadruple sub-harmonic mixer monolithic circuit which is designed and fabricated for the millimeter wave down converter applications. While most of the sub-harmonic mixers use a half of fundamental frequency, we adopt a quarter of the fundamental frequency. The proposed circuit is based on a sub-harmonic mixer with APDP(anti-parallel diode pair) and the 0.1 ${\mu}{\textrm}{m}$ PHEMT's (pseudomorphic high electron mobility transistors). Lumped elements at IF port provide better selectivity of IF frequency and increase isolation. Maximum conversion gain of 0.8 ㏈ at a LO frequency of 14.5㎓ and at a RF frequency of 60.4 ㎓ is measured. Both LO-to-RF and LO-to-IF isolations are higher than 50 ㏈. The conversion gain and isolation characteristic are the best performances among the reported quadruple sub-harmonic mixer operating in the V-band millimeter wave frequency thus far.

Development of V-band Wireless Transceiver using MMIC Modules (MMIC 모듈을 이용한 V-band 무선 송수신 시스템의 구축)

  • Lee, Sang-Jin;An, Dan;Lee, Mun-Kyo;Go, Du-Hyun;Jin, Jin-Man;Kim, Sung-Chan;Kim, Sam-Dong;Park, Hyun-Chang;Park, Hyung-Moo;Rhee, Jin-Koo
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.575-578
    • /
    • 2005
  • We report on a low-cost V-band wireless transceiver with no use of any local oscillator in the receiver block using a self-heterodyne architecture. V-band Microwave monolithic IC (MMIC) modules were developed to demonstrate the wireless transceiver using coplanar waveguide (CPW) and GaAs PHEMT technologies. The MMIC modules such as the MMIC low noise amplifier (LNA), medium power amplifier (MPA) and the up/down-mixer were installed in the transceiver system. To interface the MMIC chips with the component modules for the transceiver system, CPW-to-waveguide fin-line transition modules of WR-15 type were designed and fabricated. The fabricated LNA modules showed a $S_{21}$ gain of 8.4 dB and a noise figure of 5.6 dB at 58 GHz. The MPA modules exhibited a gain of 6.9 dB and a $P_1$ $_{dB}$ of 5.4 dBm at 58 GHz. The conversion losses of the up-mixer and the down-mixer module were 14.3 dB at a LO power of 15 dBm, and 19.7 dB at a LO power of 0 dBm, respectively. From the measurement of V-band wireless transceiver, a conversion gain of 0.2 dB and a P $_{1dB}$ of 5.2 dBm were obtained in the transmitter block. The receiver block showed a conversion gain of 2.1 dB and a P $_{1dB}$ of -18.6 dBm. The wireless transceiver system demonstrated a successful data transfer within a distance of 5 meters.

  • PDF