• Title/Summary/Keyword: controller design

검색결과 6,896건 처리시간 0.402초

SDRE 기반 준최적 교통 혼잡 제어기 설계 (SDRE-Based Near Optimal Traffic Controller Design)

  • 최한호
    • 제어로봇시스템학회논문지
    • /
    • 제18권12호
    • /
    • pp.1086-1089
    • /
    • 2012
  • We propose a near optimal controller design method for ramp metering based on SDRE (State Dependent Riccati Equation) approach. We parameterize the optimal nonlinear controller in terms of the solution matrices of an SDRE. We also give a simple algorithm to obtain the controller gain. Finally we give numerical results to show the effectiveness of the proposed near optimal traffic controller design method.

볼빔에 대한 비선형 제어기 및 관측기 설계 (Nonlinear Controller and Observer Design for Ball and Beam)

  • 임규만
    • 융합신호처리학회 학술대회논문집
    • /
    • 한국신호처리시스템학회 2001년도 하계 학술대회 논문집(KISPS SUMMER CONFERENCE 2001
    • /
    • pp.125-128
    • /
    • 2001
  • In this paper, We proposed the nonlinear controller and observer design for a ball and beam system. Unfortunately, for the ball and beam system, the control coefficient is zero whenever the angular velocity or ball position are zero. Therefore, the relative degree of the ball and beam system is not well defined. The presented the nonlinear controller and observer design is based on the approximation input-output feedback linearization. And we verified that the proposed nonlinear controller and observer scheme is the feasible through a computer simulation.

  • PDF

1차 지연 특성을 갖는 전류 제어기의 이득 설계 비교 (Comparisons of gain design of the current controller with the first order lag characteristics)

  • 이진우
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2019년도 전력전자학술대회
    • /
    • pp.412-413
    • /
    • 2019
  • This paper deals with the comparisons of gain design of current controller with the first order lag characteristics. Usually the current controller for motor drives and PCSs has the first order lag characteristics to avoid the current overshoot. This paper suggests a new inductor current controller for the PCSs and also compares with other two current controllers. The simulation results show that the proposed design method also gives the first order lag characteristics and can be used as an alternative current controller for PCSs.

  • PDF

중복 분산 제어기의 안정성 (Stability of an overlapping decentralized controller)

  • 박찬국;이장규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국내학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.943-946
    • /
    • 1993
  • This paper presents design criteria of an overlapping decentralized controller by investigating the controllability and closed loop stability of the expanded system. To determine the criteria we classify the overlapping decentralized controller into an overlapping expanded controller and a contractible controller. It is shown that conditions of system expansion to design these controllers are differently used. The overlapping expanded controller needs the aggregation conditions due to the importance of a structure of the expanded system. The contractible controller which intends to use in the original space needs the restriction because of stability of the original system.

  • PDF

다양한 성능 만족을 위한 계층적 제어기 설계 (Design of Hierarchical Controller for Satisfaction of Multiple Performance)

  • 조준호
    • 전기학회논문지
    • /
    • 제56권2호
    • /
    • pp.396-406
    • /
    • 2007
  • In this paper, we proposed development of improved model reduction and design of hierarchical controller using reduction model. The model reduction is considered that it is the transient response and the steady-state response through the use of nyquist curve. The hierarchical controller selected tuning of PID controller to ensure specified gain and phase margin and hybrid smith-predictor fuzzy controller using reduction model. Simulation examples are given to show the better performance of the proposed method than conventional methods.

매트릭스 컨버터에 의한 AC 서보 영구자석형 동기전동기의 제어기 설계에 대한 고찰 : 속도제어기 (Study on Controller Design of AC Servo Permanent Magnet Synchronous Motor by Matrix Converter : Speed Controller)

  • 정충일;이상철;모동영;최창영;김태웅;박귀근
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2008년도 하계학술대회 논문집
    • /
    • pp.106-108
    • /
    • 2008
  • This paper deals with the design for speed controller to drive PMSM by matrix converter without DC-link circuit as the power conversion system of AC servo motor drive. To design the speed controller of PMSM drive, the closed-loop transfer function of speed controller is calculated and then the frequency-domain response characteristics are analyzed by bode plot using Matlab. Based on the results by bode plot, the speed control gains are determined. As the real effects of controller designed in the frequency-domain display in the time-domain, the performance of speed controller is confirmed by the step response of speed controller. The design examples are shown and its validity of the design method mentioned in the paper is verified through PSIM simulation.

  • PDF

강인한 궤환 제어 시스템을 위한 반복 제어기의 설계 (Repetitive Controller Design for a Robust Feedback Control System)

  • 김광수;도태용
    • 제어로봇시스템학회논문지
    • /
    • 제16권7호
    • /
    • pp.668-673
    • /
    • 2010
  • Given a periodic reference signal or disturbance, repetitive control is a special control scheme to reduce a tracking error effectively by the periodic signal generator in the repetitive controller. In general, a repetitive controller is added on the existing feedback control system to improve the tracking performance. However, because the information used in the design of the feedback controller is not taken into account, the design problem of the repetitive controller is totally another problem irrespective of that of the feedback controller. In this paper, we present a more general method to design an add-on type repetitive controller using the information on the performance of the existing feedback control system. We first show that a robust stability condition of repetitive control systems is obtained using the well-known robust performance condition of general feedback control systems. It is also shown that we can obtain a steady-state tracking error described in a simple form without time-delay element if the robust stability condition is satisfied for the repetitive control system. From the obtained results, several design criterions for repetitive controller are provided. Through the simulation study, the feasibility of the proposed method is verified.

태양광 발전 시스템용 3-레벨 부스트 컨버터 제어기 설계에 관한 연구 (A Study on the Controller Design of the Three-Level Boost Converter for Photovoltaic Power Conditioning System)

  • 이규민;김일송
    • 전력전자학회논문지
    • /
    • 제26권3호
    • /
    • pp.227-236
    • /
    • 2021
  • This research proposes a modeling and controller design of a three-level boost (TLB) converter for the implementation of maximum power point tracking (MPPT) in the photovoltaic power conditioning system (PCS). Contrary to the output voltage control of the conventional controller, the Photovoltaic PCS requires an input voltage controller for MPPT operation. A TLB converter has the advantage of decreasing the inductor size and increasing efficiency compared with the existing booster converter. However, an optimal controller is difficult to design due to the complexity of the TLB operations, which have two operational modes on the duty ratio boundary of 0.5. Therefore, the unified linear model equations of the TLB converters, which can be applicable to both operational modes, are derived using linearized solar cell expressions. Furthermore, the transfer functions are obtained for the controller design. The MPPT voltage controller is designed using MATLAB SISOTOOL. In addition, a controller for capacitor voltage unbalancing is described and designed. The simulations and experimental verifications are conducted to verify the effectiveness of the small-signal analysis and control system design.

Design of Fuzzy PD+I Controller Based on PID Controller

  • Oh, Sea-June;Yoo, Heui-Han;Lee, Yun-Hyung;So, Myung-Ok
    • 한국항해항만학회지
    • /
    • 제34권2호
    • /
    • pp.117-122
    • /
    • 2010
  • Since fuzzy controllers are nonlinear, it is more difficult to set the controller gains and to analyse the stability compared to conventional PID controllers. This paper proposes a fuzzy PD+I controller for tracking control which uses a linear fuzzy inference(product-sum-gravity) method based on a conventional linear PID controller. In this scheme the fuzzy PD+I controller works similar to the control performance as the linear PD plus I(PD+I) controller. Thus it is possible to analyse and design an fuzzy PD+I controller for given systems based on a linear fuzzy PD controller. The scaling factors tuning scheme, another topic of fuzzy controller design procedure, is also introduced in order to fine performance of the fuzzy PD+I controller. The scaling factors are adjusted by a real-coded genetic algorithm(RCGA) in off-line. The simulation results show the effectiveness of the proposed fuzzy PD+I controller for tracking control problems by comparing with the conventional PID controllers.

A Novel Controller for Electric Springs Based on Bode Diagram Optimization

  • Wang, Qingsong;Cheng, Ming;Jiang, Yunlei
    • Journal of Power Electronics
    • /
    • 제16권4호
    • /
    • pp.1396-1406
    • /
    • 2016
  • A novel controller design is presented for the recently proposed electric springs (ESs). The dynamic modeling is analyzed first, and the initial Bode diagram is derived from the s-domain transfer function in the open loop. The design objective is set according to the characteristics of a minimum phase system. Step-by-step optimizations of the Bode diagram are provided to illustrate the proposed controller, the design of which is different from the classical multistage leading/lagging design. The final controller is the accumulation of the transfer function at each step. With the controller and the recently proposed δ control, the critical load voltage can be regulated to follow the desired waveform precisely while the fluctuations and distortions of the input voltage are passed to the non-critical loads. Frequency responses at any point can be modified in the Bode diagram. The results of the modeling and controller design are validated via simulations. Hardware and software designs are provided. A digital phase locked loop is realized with the platform of a digital signal processor. The effectiveness of the proposed control is also validated by experimental results.