• Title/Summary/Keyword: continuous stacking method

Search Result 12, Processing Time 0.033 seconds

A study on application techniques in design phase of applying a crossing stacking method of modular housing (모듈러 저층집합주거의 교차적층방식 설계 적용기술 연구)

  • Jun, Young-Hun;Lee, Young;Kim, Kyoon-Tai
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.81-82
    • /
    • 2014
  • Modular housing has many advantages such as economy, flexibility and reusability. The domestic modular housing of a continuous stacking method has been built in military facilities, and dormitories. However, there is a limit to present diversity of low-rise multi-family housing. A cross stacking method is a way to pursue diversity of that but there is a difficulty to apply it owe to lack of cases and related technologies. Therefore, the purpose of this study is to suggest application techniques in design phase of applying the crossing stacking method in advance.

  • PDF

Optimal Design of Composite Laminated Plates with the Discreteness in Ply Angles and Uncertainty in Material Properties Considered (섬유 배열각의 이산성과 물성치의 불확실성을 고려한 복합재료 적층 평판의 최적 설계)

  • Kim, Tae-Uk;Sin, Hyo-Cheol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.3
    • /
    • pp.369-380
    • /
    • 2001
  • Although extensive efforts have been devoted to the optimal design of composite laminated plates in recent years, some practical issues still need further research. Two of them are: the handling of the ply angle as either continuous or discrete; and that of the uncertainties in material properties, which were treated as continuous and ignored respectively in most researches in the past. In this paper, an algorithm for stacking sequence optimization which deals with discrete ply angles and that for thickness optimization which considers uncertainties in material properties are used for a two step optimization of composite laminated plates. In the stacking sequence optimization, the branch and bound method is modified to handle discrete variables; and in the thickness optimization, the convex modeling is used in calculating the failure criterion, given as constraint, to consider the uncertain material properties. Numerical results show that the optimal stacking sequence is found with fewer evaluations of objective function than expected with the size of feasible region taken into consideration; and the optimal thickness increases when the uncertainties of elastic moduli considered, which shows such uncertainties should not be ignored for safe and reliable designs.

Study on the electric properties of layered $BaTiO_3$ films prepared new stacking method (새로운 방법으로 제조된 적층구조 $BaTiO_3$ 박막의 전기적 특성에 관한 연구)

  • Song, Man-Ho;Lee, Yun-Hi;Hahn, Taek-Sang;Oh, Myung-Hwan;Yoon, Ki-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 1995.07c
    • /
    • pp.1129-1132
    • /
    • 1995
  • In the preparation of the layered $BaTiO_3$ thin films with high performance, the new stacking method using the continuous cooling of the substrate was introduced. Amorphous/polycrystalline $BaTiO_3$ layered structure was confirmed by SEM and index of refraction. The layered $BaTiO_3$ thin films formed by the new stacking method showed such a high dielectric constant that the layered structure could not be explained by a stacking structure of the two defined layers but could only be explained by multi-layered structure, i.e. amorphous/micro crystalline/polycrystalline structure. The layered $BaTiO_3$ thin film with a thickness of 240 nm showed higher capacitance per unit area and breakdown strength than the double layered $BaTiO_3$ thin film prepared by the conventional stacking method. And well defined ferroelectric hysteresis leer was observed in the layered $BaTiO_3$ thin film with a thickness of 200 nm.

  • PDF

A Study on analyzing the space of Villa VPRO used datascape design strategy (데이터스케이프 설계방법을 적용한 Villa VPRO 공간분석 연구)

  • 박영경
    • Korean Institute of Interior Design Journal
    • /
    • v.13 no.3
    • /
    • pp.145-152
    • /
    • 2004
  • The European architects including MVRDV, Rem Koolhaas, Van Berkel, and Zaha Hadid tend to use the their own design strategy based on the objective data. This Architectural design method leads to make new paradigm of contemporary architecture. For the purpose of the understanding a part of new architecture paradigm I will analyze the case of Villa VPRO designed by MVRDV. At the result, I can draw the following conclusions. First, through collecting and analyzing data, drawing design concept and planning the space program, they decided on the design strategies of Villa VPRO. They designed the space volume having 42.4m$\times$42.4m floors and infiltrated environmental elements to solve the problems about deep space. Second, Villa VPRO was constructed by 'creative space-making system: a series of floors much like a geological formation, the continuous floors interconnected by spatial means, the precision bombardments of snake-like holes, open elevations, the stacking spaces. Third, Villa VPRO produced the spectacle space effect the various formation of continuous floors make a lot of difference space types in this building. Also they lead to move naturally and give event space. A numbers of holes and openness make it possible to provide friendly environment with combining light and air with views of the surrounding and transparency. And using the method of stacking many types of space make the differences in height.

The S-wave Velocity Structure of Shallow Subsurface Obtained by Continuous Wavelet Transform of Short Period Rayleigh Waves (Continuous Wavelet Transform을 단주기 레일리파에 적용하여 구한 천부지반 S파 속도구조)

  • Jung, Hee-Ok;Lee, Bo-Ra
    • Journal of the Korean earth science society
    • /
    • v.28 no.7
    • /
    • pp.903-913
    • /
    • 2007
  • In this study, the researchers compared the S-wave velocity structures obtained by two kinds of dispersion curves: phase and group dispersions from a tidal flat located in the SW coast of the Korean peninsula. The ${\tau}-p$ stacking method was used for the phase velocity and two different methods (multiple filtering technique: MFT and continuous wavelet transform: CWT) for the phase velocity. It was difficult to separate higher modes from the fundamental mode phase velocities using the ${\tau}-p$ method, whereas the separation of different modes of group velocity were easily achieved by both MFT and CWT. Of the two methods, CWT was found to be more efficient than MFT. The spatial resolutions for the inversion results of the fundamental mode for both phase and group velocities were good for only a very shallow depth of ${\sim}1.5m$. On the other hand, the spatial resolutions were good up to ${\sim}4m$ when both the fundamental and the 1st higher mode poop velocities obtained by CWT were used for S-wave inversion. This implies that the 1st higher mode Rayleigh waves contain more information on the S-wave velocity in deeper subsurface. The researchers applied the CWT method to obtain the fundamental and the 1st higher mode poop velocities of the S-wave velocity structure of a tidal flat located in SW coast of the Korean peninsula. Thea the S-wave velocity structures were compared with the borehole description of the study area.

Nondestructive Evaluation of Microstructure of SiCf/SiC Composites by X-Ray Computed Microtomography

  • Kim, Weon-Ju;Kim, Daejong;Jung, Choong Hwan;Park, Ji Yeon;Snead, Lance L.
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.6
    • /
    • pp.378-383
    • /
    • 2013
  • Continuous fiber-reinforced ceramic matrix composites (CFCCs) have a complex distribution of porosity, consisting of interfiber micro pores and interbundle/interply macro pores. Owing to the complex geometry of the pores and fiber architecture, it is difficult to obtain representative microstructural features throughout the specimen volume with conventional, destructive ceramographic approaches. In this study, we introduce X-ray computed microtomography (X-ray ${\mu}CT$) to nondestructively analyze the microstructures of disk shaped and tubular $SiC_f$/SiC composites fabricated by the chemical vapor infiltration (CVI) method. The disk specimen made by stacking plain-woven SiC fabrics exhibited periodic, large fluctuation of porosity in the stacking direction but much less variation of porosity perpendicular to the fabric planes. The X-ray ${\mu}CT$ evaluation of the microstructure was also effectively utilized to improve the fabrication process of the triple-layered tubular SiC composite.

A Study on Generation and Operation of Dynamic Pattern at Micro-stereolithography using $DMD^{TM}$ ($DMD^{TM}$를 이용한 마이크로 광 조형 시스템에서 다이나믹 패턴 생성 및 구동에 관한 연구)

  • Kim H.S.;Choi J.W.;Ha Y.M.;Kwon B.H.;Won M.H.;Lee S.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1214-1218
    • /
    • 2005
  • As demands for precision parts are increased, existing methods to fabricate them such as MEMS, LIGA technology have the technical limitations like high precision, high functionality and ultra miniaturization. A micro-stereolithography technology based on $DMD^{TM}$(Digital Micromirror Device) can meet these demands. In this technology, STL file is the standard format as the same of conventional rapid prototyping system, and 3D part is fabricated by stacking layers that are sliced as 2D section from STL file. Whereas in conventional method, the resin surface is cured as scanning laser beam spot according to the section shape, but in this research, we use integral process which enables to cure the resin surface at one time. In this paper, we deal with the dynamic pattern generation and $DMD^{TM}$ operation to fabricate micro structures. Firstly, we address effective slicing method of STL file, conversion to bitmap, and dynamic pattern generation. Secondly, we suggest $DMD^{TM}$ operation and optimal support manufacturing for $DMD^{TM}$ mounting. Thirdly, we examine the problems on continuous stacking layers, and their improvements in software aspects.

  • PDF

Discrete Optimization of Unsymmetric Composite Laminates Using Linear Aproximation Method (선형 근사화방법을 이용한 비대칭 복합 적층평판의 이산최적화)

  • 이상근;구봉근;한상훈
    • Computational Structural Engineering
    • /
    • v.10 no.2
    • /
    • pp.255-263
    • /
    • 1997
  • The optimum design of most structural systems used in practice requires considering design variables as discrete quantities. The present paper shows that the linear approximation method is very effective as a tool for the discrete optimum designs of unsymmetric composite laminates. The formulated design problem is subjected to a multiple in-plane loading condition due to shear and axial forces, bending and twisting moments, which is controlled by maximum strain criterion for each of the plys of a composite laminate. As an initial approach, the process of continuous variable optimization by FDM is required only once in operating discrete optimization. The nonlinear discrete optimization problem that has the discrete and continuous variables is transformed into the mixed integer programming problem by SLDP. In numerical examples, the discrete optimum solutions for the unsymmetric composite laminates consisted of six plys according to rotated stacking sequence were found, and then compared the results with the nonlinear branch and bound method to verify the efficiency of present method.

  • PDF

Additive Manufacturing of Various Ceramic Composition Using Inkjet Printing Process (잉크젯 프린팅을 이용한 연속 조성 세라믹 화합물 구조체 형성)

  • Park, Jae-Hyeon;Choi, Jung-Hoon;Hwang, Kwang-Taek;Kim, Jin-Ho
    • Korean Journal of Materials Research
    • /
    • v.30 no.11
    • /
    • pp.627-635
    • /
    • 2020
  • 3D printing technology is a processing technology in which 3D structures are formed by fabricating multiple 2D layers of materials based on 3D designed digital data and stacking them layer by layer. Although layers are stacked using inkjet printing to release various materials, it is still rare for research to successfully form a product as an additive manufacture of multi-materials. In this study, dispersion conditions are optimized by adding a dispersant to an acrylic monomer suitable for inkjet printing using Co3O4 and Al2O3. 3D structures having continuous composition composed of a different ceramic material are manufactured by printing using two UV curable ceramic inks whose optimization is advanced. After the heat treatment, the produced structure is checked for the formation and color of the desired crystals by comparing the crystalline analysis according to the characteristics of each part of the structure with ceramic pigments made by solid phase synthesis method.

Microstructural Analysis of STS316L Samples Manufactured by Powder Bed Fusion and Post-heat Treatments (Powder Bed Fusion 공정으로 제조한 STS 316L의 미세조직과 후속 열처리 특성)

  • Song, S.Y.;Lee, D.W.;Cong, D.V.;Kim, J.W.;Lee, S.M.;Joo, S.H.;Kim, Jin-Chun
    • Journal of Powder Materials
    • /
    • v.29 no.1
    • /
    • pp.14-21
    • /
    • 2022
  • In the powder bed fusion (PBF) process, a 3D shape is formed by the continuous stacking of very fine powder layers using computer-aided design (CAD) modeling data, following which laser irradiation can be used to fuse the layers forming the desired product. In this method, the main process parameters for manufacturing the desired 3D products are laser power, laser speed, powder form, powder size, laminated thickness, and laser diameter. Stainless steel (STS) 316L exhibits excellent strength at high temperatures, and is also corrosion resistant. Due to this, it is widely used in various additive manufacturing processes, and in the production of corrosion-resistant components with complicated shapes. In this study, rectangular specimens have been manufactured using STS 316L powder via the PBF process. Further, the effect of heat treatment at 800 ℃ on the microstructure and hardness has been investigated.