Browse > Article
http://dx.doi.org/10.4150/KPMI.2022.29.1.14

Microstructural Analysis of STS316L Samples Manufactured by Powder Bed Fusion and Post-heat Treatments  

Song, S.Y. (School of Materials Science and Engineering University of Ulsan)
Lee, D.W. (School of Materials Science and Engineering University of Ulsan)
Cong, D.V. (School of Materials Science and Engineering University of Ulsan)
Kim, J.W. (School of Materials Science and Engineering University of Ulsan)
Lee, S.M. (School of Materials Science and Engineering University of Ulsan)
Joo, S.H. (School of Materials Science and Engineering University of Ulsan)
Kim, Jin-Chun (School of Materials Science and Engineering University of Ulsan)
Publication Information
Journal of Powder Materials / v.29, no.1, 2022 , pp. 14-21 More about this Journal
Abstract
In the powder bed fusion (PBF) process, a 3D shape is formed by the continuous stacking of very fine powder layers using computer-aided design (CAD) modeling data, following which laser irradiation can be used to fuse the layers forming the desired product. In this method, the main process parameters for manufacturing the desired 3D products are laser power, laser speed, powder form, powder size, laminated thickness, and laser diameter. Stainless steel (STS) 316L exhibits excellent strength at high temperatures, and is also corrosion resistant. Due to this, it is widely used in various additive manufacturing processes, and in the production of corrosion-resistant components with complicated shapes. In this study, rectangular specimens have been manufactured using STS 316L powder via the PBF process. Further, the effect of heat treatment at 800 ℃ on the microstructure and hardness has been investigated.
Keywords
Stainless steel 316L; Additive Manufacturing; Powder Bed Fusion; Microstructure; Post heat-treatment;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 S. H. Joo: 4th Industrial Revolution 3D Printing, Cheong Media, (2017)
2 ASTM International Technical Committee F42 on Additive Manufacturing Technologies, ASTM International, (2009).
3 J. H. Lee and Y. S. Kim: Corros. Sci. Technol., 14 (2015) 313   DOI
4 R. Casati, J. Lemke and M. Vedani: J. Mater. Sci. Technol., 32 (2016) 738.   DOI
5 E.-S. Lee: Int. J. Adv. Manuf. Technol., 16 (2000) 591.   DOI
6 Q. Chao, S. Thomas, N. Birbilis, P. Cizek, P. D. Hodgson and D. l Fabijanic: Mater. Sci. Eng. A, 821 (2021) 141611.   DOI
7 T. Voisin, J. Forien, A. Perron, S. Aubry, N. Bertin, A. Samanta, A. Baker and Y. M. Wang: Acta Mater., 203 (2021) 116476.   DOI
8 P. Krakhmalev, G. Fredriksson, K. Svensson, I. Yadroitsev, I. Yadroitsava, M. Thuvander and R. Peng: Metals, 8 (2018) 643.   DOI
9 J. M. Park, J. M. Jeon, J. G. Kim, Y. Seong, S. H. Park, and H. S. Kim: J. Powder Mater., 25 (2018) 475.
10 T. Kurzynowski, K. Gruber, W. Stopyra, B. Kuznicka and E. Chlebus: Mater. Sci. Eng. A, 718 (2018) 64.   DOI
11 J. J. Marattukalama, D. Karlsson, V. Pacheco, P. Beran, U. Wiklund, U. Jansson, B. Hjorvarssona and M. Sahlberg: Mater. Des., 193 (2020) 108852.   DOI
12 J.-H. Kim, D. W. Lee, N. M. Thuyet and J.-C. Kim: IFOST, (2018).
13 H. Yin, M. Song, P. Deng, L. Li, B. C. Prorok and X. Lou: Addit. Manuf., 41 (2021) 101981.
14 Wohlers Report: 3D Printing and Additive Manufacturing Global State of the Industry, Wohlers Associates, (2020).
15 I. Gibson, D. Rosen and B. Stucker: Additive Manufacturing Technologies 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing, 2nd Edition, Springer, (2015).
16 I. Tolosa, F. Garciandia, F. Zubiri, F. Zapirain and A. Esnaola: Int. J. Adv. Manuf. Technol., 51 (2010) 639   DOI
17 J.-W. Rho, J.-H. Kim and C.-Ku Lee: Journal of KWJS, 26 (2008) 34.
18 R. Saluja and K. M Moeed: Int. J. Eng. Sci. Technol., 4 (2012) 2206.
19 T. Niendorf, S. Leuders, A. Riemer, H. A. Richard, T. Troster and D. Schwarze: Metall. Mater. Trans. B, 44 (2013) 794.   DOI