DOI QR코드

DOI QR Code

Microstructural Analysis of STS316L Samples Manufactured by Powder Bed Fusion and Post-heat Treatments

Powder Bed Fusion 공정으로 제조한 STS 316L의 미세조직과 후속 열처리 특성

  • Song, S.Y. (School of Materials Science and Engineering University of Ulsan) ;
  • Lee, D.W. (School of Materials Science and Engineering University of Ulsan) ;
  • Cong, D.V. (School of Materials Science and Engineering University of Ulsan) ;
  • Kim, J.W. (School of Materials Science and Engineering University of Ulsan) ;
  • Lee, S.M. (School of Materials Science and Engineering University of Ulsan) ;
  • Joo, S.H. (School of Materials Science and Engineering University of Ulsan) ;
  • Kim, Jin-Chun (School of Materials Science and Engineering University of Ulsan)
  • 송승윤 (울산대학교 첨단소재공학부) ;
  • 이동완 (울산대학교 첨단소재공학부) ;
  • 딘 반 꽁 (울산대학교 첨단소재공학부) ;
  • 김진우 (울산대학교 첨단소재공학부) ;
  • 이성모 (울산대학교 첨단소재공학부) ;
  • 주승환 (울산대학교 첨단소재공학부) ;
  • 김진천 (울산대학교 첨단소재공학부)
  • Received : 2022.02.12
  • Accepted : 2022.02.27
  • Published : 2022.02.28

Abstract

In the powder bed fusion (PBF) process, a 3D shape is formed by the continuous stacking of very fine powder layers using computer-aided design (CAD) modeling data, following which laser irradiation can be used to fuse the layers forming the desired product. In this method, the main process parameters for manufacturing the desired 3D products are laser power, laser speed, powder form, powder size, laminated thickness, and laser diameter. Stainless steel (STS) 316L exhibits excellent strength at high temperatures, and is also corrosion resistant. Due to this, it is widely used in various additive manufacturing processes, and in the production of corrosion-resistant components with complicated shapes. In this study, rectangular specimens have been manufactured using STS 316L powder via the PBF process. Further, the effect of heat treatment at 800 ℃ on the microstructure and hardness has been investigated.

Keywords

Acknowledgement

본 과제(결과물)는 2021년도 교육부의 재원으로 한국연구재단의 지원을 받아 수행된 지자체-대학 협력기반 지역혁신 사업의 결과입니다.(2021RIS-003)

References

  1. Wohlers Report: 3D Printing and Additive Manufacturing Global State of the Industry, Wohlers Associates, (2020).
  2. I. Gibson, D. Rosen and B. Stucker: Additive Manufacturing Technologies 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing, 2nd Edition, Springer, (2015).
  3. S. H. Joo: 4th Industrial Revolution 3D Printing, Cheong Media, (2017)
  4. ASTM International Technical Committee F42 on Additive Manufacturing Technologies, ASTM International, (2009).
  5. I. Tolosa, F. Garciandia, F. Zubiri, F. Zapirain and A. Esnaola: Int. J. Adv. Manuf. Technol., 51 (2010) 639 https://doi.org/10.1007/s00170-010-2631-5
  6. J. H. Lee and Y. S. Kim: Corros. Sci. Technol., 14 (2015) 313 https://doi.org/10.14773/cst.2015.14.6.313
  7. J.-H. Kim, D. W. Lee, N. M. Thuyet and J.-C. Kim: IFOST, (2018).
  8. J.-W. Rho, J.-H. Kim and C.-Ku Lee: Journal of KWJS, 26 (2008) 34.
  9. R. Casati, J. Lemke and M. Vedani: J. Mater. Sci. Technol., 32 (2016) 738. https://doi.org/10.1016/j.jmst.2016.06.016
  10. E.-S. Lee: Int. J. Adv. Manuf. Technol., 16 (2000) 591. https://doi.org/10.1007/s001700070049
  11. R. Saluja and K. M Moeed: Int. J. Eng. Sci. Technol., 4 (2012) 2206.
  12. Q. Chao, S. Thomas, N. Birbilis, P. Cizek, P. D. Hodgson and D. l Fabijanic: Mater. Sci. Eng. A, 821 (2021) 141611. https://doi.org/10.1016/j.msea.2021.141611
  13. T. Voisin, J. Forien, A. Perron, S. Aubry, N. Bertin, A. Samanta, A. Baker and Y. M. Wang: Acta Mater., 203 (2021) 116476. https://doi.org/10.1016/j.actamat.2020.11.018
  14. H. Yin, M. Song, P. Deng, L. Li, B. C. Prorok and X. Lou: Addit. Manuf., 41 (2021) 101981.
  15. P. Krakhmalev, G. Fredriksson, K. Svensson, I. Yadroitsev, I. Yadroitsava, M. Thuvander and R. Peng: Metals, 8 (2018) 643. https://doi.org/10.3390/met8080643
  16. J. M. Park, J. M. Jeon, J. G. Kim, Y. Seong, S. H. Park, and H. S. Kim: J. Powder Mater., 25 (2018) 475.
  17. T. Niendorf, S. Leuders, A. Riemer, H. A. Richard, T. Troster and D. Schwarze: Metall. Mater. Trans. B, 44 (2013) 794. https://doi.org/10.1007/s11663-013-9875-z
  18. T. Kurzynowski, K. Gruber, W. Stopyra, B. Kuznicka and E. Chlebus: Mater. Sci. Eng. A, 718 (2018) 64. https://doi.org/10.1016/j.msea.2018.01.103
  19. J. J. Marattukalama, D. Karlsson, V. Pacheco, P. Beran, U. Wiklund, U. Jansson, B. Hjorvarssona and M. Sahlberg: Mater. Des., 193 (2020) 108852. https://doi.org/10.1016/j.matdes.2020.108852