• Title/Summary/Keyword: contact metric structure

Search Result 43, Processing Time 0.025 seconds

SEMI-INVARIANT SUBMANIFOLDS OF CODIMENSION 3 OF A COMPLEX PROJECTIVE SPACE IN TERMS OF THE JACOBI OPERATOR

  • HER, JONG-IM;KI, U-HANG;LEE, SEONG-BAEK
    • Bulletin of the Korean Mathematical Society
    • /
    • v.42 no.1
    • /
    • pp.93-119
    • /
    • 2005
  • In this paper, we characterize some semi-invariant sub-manifolds of codimension 3 with almost contact metric structure ($\phi$, $\xi$, g) in a complex projective space $CP^{n+1}$ in terms of the structure tensor $\phi$, the Ricci tensor S and the Jacobi operator $R_\xi$ with respect to the structure vector $\xi$.

Certain Characterization of Real Hypersurfaces of type A in a Nonflat Complex Space Form

  • Ki, U-Hang
    • Kyungpook Mathematical Journal
    • /
    • v.61 no.1
    • /
    • pp.181-190
    • /
    • 2021
  • Let M be a real hypersurface with almost contact metric structure (ϕ, ��, η, g) in a nonflat complex space form Mn(c). We denote S and R�� by the Ricci tensor of M and by the structure Jacobi operator with respect to the vector field �� respectively. In this paper, we prove that M is a Hopf hypersurface of type A in Mn(c) if it satisfies R��ϕ = ϕR�� and at the same time R��(Sϕ - ϕS) = 0.

SEMI-INVARIANT SUBMANIFOLDS OF CODIMENSION 3 SATISFYING 𝔏ξ∇ = 0 IN A NONFLAT COMPLEX SPACE FORM

  • AHN, SEONG-SOO;LEE, SEONG-BAEK;LEE, AN-AYE
    • Honam Mathematical Journal
    • /
    • v.23 no.1
    • /
    • pp.133-143
    • /
    • 2001
  • In this paper, we characterize some semi-invariant submanifolds of codimension 3 with almost contact metric structure (${\phi}$, ${\xi}$, g) satisfying 𝔏ξ∇ = 0 in a nonflat complex space form, where ${\nabla}$ denotes the Riemannian connection induced on the submanifold, and 𝔏ξ is the operator of the Lie derivative with respect to the structure vector field ${\xi}$.

  • PDF

ON COMPACT GENERIC SUBMANIFOLDS IN A SASAKIAN SPACE FORM

  • SUNG-BAIK LEE;NAM-GIL KIM;SEUNG-GOOK HAN;IN-YEONG YOO
    • Communications of the Korean Mathematical Society
    • /
    • v.9 no.2
    • /
    • pp.401-409
    • /
    • 1994
  • One of typical submanifolds of a Sasakian manifold is the so-called generic submanifolds which are defined as follows: Let M be a submanifold of a Sasakian manifold M with almost contact metric structure (ø, G, ξ) such that M is tangent to the structure vector ξ. If each normal space is mapped into the tangent space under the action of ø, M is called a generic submanifold of M [2], [8].(omitted)

  • PDF

On characterizations of real hypersurfaces of type B in a complex hyperbolic space

  • Ahn, Seong-Soo;Suh, Young-Jin
    • Journal of the Korean Mathematical Society
    • /
    • v.32 no.3
    • /
    • pp.471-482
    • /
    • 1995
  • A complex n-dimensional Kaehlerian manifold of constant holomorphic sectional curvature c is called a comples space form, which is denoted by $M_n(c)$. A complete and simply connected complex space form consists of a complex projective space $P_nC$, a complex Euclidean space $C^n$ or a complex hyperbolic space $H_nC$, according as c > 0, c = 0 or c < 0. The induced almost contact metric structure of a real hypersurface M of $M_n(c)$ is denoted by $(\phi, \zeta, \eta, g)$.

  • PDF

SASAKIAN 3-MANIFOLDS ADMITTING A GRADIENT RICCI-YAMABE SOLITON

  • Dey, Dibakar
    • Korean Journal of Mathematics
    • /
    • v.29 no.3
    • /
    • pp.547-554
    • /
    • 2021
  • The object of the present paper is to characterize Sasakian 3-manifolds admitting a gradient Ricci-Yamabe soliton. It is shown that a Sasakian 3-manifold M with constant scalar curvature admitting a proper gradient Ricci-Yamabe soliton is Einstein and locally isometric to a unit sphere. Also, the potential vector field is an infinitesimal automorphism of the contact metric structure. In addition, if M is complete, then it is compact.

STRUCTURE JACOBI OPERATOR OF SEMI-INVARINAT SUBMANIFOLDS IN COMPLEX SPACE FORMS

  • KI, U-HANG;KIM, SOO JIN
    • East Asian mathematical journal
    • /
    • v.36 no.3
    • /
    • pp.389-415
    • /
    • 2020
  • Let M be a semi-invariant submanifold of codimension 3 with almost contact metric structure (𝜙, ξ, η, g) in a complex space form Mn+1(c), c ≠ 0. We denote by Rξ and R'X be the structure Jacobi operator with respect to the structure vector ξ and be R'X = (∇XR)(·, X)X for any unit vector field X on M, respectively. Suppose that the third fundamental form t satisfies dt(X, Y) = 2𝜃g(𝜙X, Y) for a scalar 𝜃(≠ 2c) and any vector fields X and Y on M. In this paper, we prove that if it satisfies Rξ𝜙 = 𝜙Rξ and at the same time R'ξ = 0, then M is a Hopf real hypersurfaces of type (A), provided that the scalar curvature ${\bar{r}}$ of M holds ${\bar{r}}-2(n-1)c{\leq}0$.