• 제목/요약/키워드: contact AFM

검색결과 260건 처리시간 0.022초

원자간력 현미경을 이용한 초소형 마이크로 부품 표면 형상 측정 시스템 개발 (Development of a Measurement System for the Surface Shape of Micro-parts by Using Atomic Force Microscope)

  • 홍성욱;고명준;신영헌;이득우
    • 한국공작기계학회논문집
    • /
    • 제14권6호
    • /
    • pp.22-30
    • /
    • 2005
  • This paper proposes a measurement method for the surface shape of micro-parts by using an atomic force microscope(AFM). To this end, two techniques are presented: First, the measurement range is expanded by using an image matching method based on correlation coefficients. To account for the inaccuracy of the coarse stage implemented in AFM, the image matching technique is applied to two neighboring images intentionally overlapped with each other. Second, a method to measure the shape of relatively large specimen is proposed that utilizes the inherent trigger mechanism due to the atomic force. The proposed methods are proved effective through a series of experiments.

AFM을 이용한 나노 인덴터 팁의 면적함수 결정에 관한 연구 (A Study on Determination of the Area Function of Nano Indenter Tip with AFM)

  • 박성조;이현우;한승우
    • 한국정밀공학회지
    • /
    • 제21권6호
    • /
    • pp.145-152
    • /
    • 2004
  • Depth-sensing indentation is wifely used for evaluation of mechanical properties of thin films. It is generally accepted that the most significant source of uncertainty in nanoindentation measurement is the geometry of the indenter tip. Therefore the successful application of the technique requires accurate calibration of the indenter tip geometry. The direct measurement of geometry of a Berkovich indenter was determined using a atomic force microscope. The indentation geometrical calibration of contact area was performed by analyzing the indenter tip profile. The equations of area functions were proposed for nanoscale thin films..

Mechanical removal of surface residues on graphene for TEM characterizations

  • Dong-Gyu Kim;Sol Lee;Kwanpyo Kim
    • Applied Microscopy
    • /
    • 제50권
    • /
    • pp.28.1-28.6
    • /
    • 2020
  • Contamination on two-dimensional (2D) crystal surfaces poses serious limitations on fundamental studies and applications of 2D crystals. Surface residues induce uncontrolled doping and charge carrier scattering in 2D crystals, and trapped residues in mechanically assembled 2D vertical heterostructures often hinder coupling between stacked layers. Developing a process that can reduce the surface residues on 2D crystals is important. In this study, we explored the use of atomic force microscopy (AFM) to remove surface residues from 2D crystals. Using various transmission electron microscopy (TEM) investigations, we confirmed that surface residues on graphene samples can be effectively removed via contact-mode AFM scanning. The mechanical cleaning process dramatically increases the residue-free areas, where high-resolution imaging of graphene layers can be obtained. We believe that our mechanical cleaning process can be utilized to prepare high-quality 2D crystal samples with minimum surface residues.

연마가공에서의 접촉계면 특성과 재료제거율간의 관계에 대한 연구 (On the Relationship between Material Removal and Interfacial Properties at Particulate Abrasive Machining Process)

  • 성인하
    • Tribology and Lubricants
    • /
    • 제25권6호
    • /
    • pp.404-408
    • /
    • 2009
  • 본 연구에서는 마이크로/나노입자를 이용한 연마가공 공정에서의 입자-표면간 접촉상황에서 접촉계면의 기계적 성질과 재료제거율간의 관계를 실험적으로 고찰하였다. 연마가공 공정에서의 입자-평면간 접촉을 모사하기 위하여 팁 대신 실리카 입자를 부착한 콜로이드 프로브를 이용한 원자현미경 실험을 통하여 마찰력과 강성을 실험적으로 측정하였다. 실험결과와 이론적 접촉해석으로부터, 마찰계수는 횡방향 접촉강성에 따라 대체적으로 증가하고 재료제거율은 실리카 입자와 Cu, PolySi, Ni과 같은 다양한 재료표면간 접촉에서의 마찰계수들과 지수함수적인 비례관계를 가지고 있음을 규명하였다.

미세입자의 트라이볼로지적 응용을 위한 마찰특성 고찰 (Study on the Frictional Characteristics of Micro-particles for Tribological Application)

  • 성인하;한흥구;공호성
    • Tribology and Lubricants
    • /
    • 제25권2호
    • /
    • pp.81-85
    • /
    • 2009
  • Interests in micro/nano-particles have been greatly increasing due to their wide applications in various fields such as environmental and medical sciences as well as engineering. In order to obtain a fundamental understanding of the tribological characteristics at particle-surface contact interface, frictional behaviors according to load/pressure and materials were obtained by using atomic force microscope(AFM) cantilevers with different stiffnesses and tips. Lateral contact stiffnesses were observed in various tip-surface contact situations. Experimental results show that stick-slip friction behavior occurs even when the colloidal probes with a particle of a few micrometers in diameter, which have a relatively large contact area and lack a well-shaped apex, were used. This indicates that atomic stick-slip friction may be a more common phenomenon than it is currently thought to be. Also, experimental results were investigated by considering the competition between the stiffness of the interatomic potential across the interface and the elastic stiffnesses of the contacting materials and the force sensor itself.

윤활유의 수분혼입 및 베어링강의 표면 조도가 구름접촉 피로수명에 미치는 효과 (Effect of Water Contamination of the Lubricant and Surface Roughness of Bearing Steel on the Rolling Contact Fatigue Life)

  • 허태현;심충기;김홍석;신기훈;정성균
    • 한국안전학회지
    • /
    • 제32권1호
    • /
    • pp.15-20
    • /
    • 2017
  • A large amount of research has been performed on the rolling contact fatigue(RCF) life of bearings, since it directly affects the safety and reliability of mechanical systems. It is well known that rolling contact fatigue life is influenced by several parameters including contact pressure, oil contamination by water or metal particles, and the surface conditions of bearings. However, the detailed damage mechanisms involved in rolling contact fatigue have not been clearly identified yet. In this paper the effects of water contamination of the lubricant and surface roughness of bearing steel on the rolling contact fatigue life were investigated. Two types of specimens with different surface roughness values were prepared through turning and lapping operations. They were tested under two different lubrication conditions, i.e. oil lubricant with 100% of oil and the water contaminated condition with 80% of oil and 20% of water using the rolling contact fatigue testing machine. The surface damage induced by the rolling contact fatigue was observed by using atomic force microscope(AFM). Experimental results show that the rolling contact fatigue life, $L_{10}$ was reduced by 24 to 33% depending on the lubrication condition. The reduction of fatigue life in the range of 53 to 57% was also observed at different surface roughness conditions.

Micro/Nanotribology and Its Applications

  • Bhushan, Bharat
    • Tribology and Lubricants
    • /
    • 제11권5호
    • /
    • pp.128-135
    • /
    • 1995
  • Atomic force microscopy/friction force microscopy (AFM/FFM) techniques are increasingly used for tribological studies of engineering surfaces at scales, ranging from atomic and molecular to microscales. These techniques have been used to study surface roughness, adhesion, friction, scratching/wear, indentation, detection of material transfer, and boundary lubrication and for nanofabrication/nanomachining purposes. Micro/nanotribological studies of single-crystal silicon, natural diamond, magnetic media (magnetic tapes and disks) and magnetic heads have been conducted. Commonly measured roughness parameters are found to be scale dependent, requiring the need of scale-independent fractal parameters to characterize surface roughness. Measurements of atomic-scale friction of a freshly-cleaved highly-oriented pyrolytic graphite exhibited the same periodicity as that of corresponding topography. However, the peaks in friction and those in corresponding topography were displaced relative to each other. Variations in atomic-scale friction and the observed displacement has been explained by the variations in interatomic forces in the normal and lateral directions. Local variation in microscale friction is found to correspond to the local slope suggesting that a ratchet mechanism is responsible for this variation. Directionality in the friction is observed on both micro- and macro scales which results from the surface preparation and anisotropy in surface roughness. Microscale friction is generally found to be smaller than the macrofriction as there is less ploughing contribution in microscale measurements. Microscale friction is load dependent and friction values increase with an increase in the normal load approaching to the macrofriction at contact stresses higher than the hardness of the softer material. Wear rate for single-crystal silicon is approximately constant for various loads and test durations. However, for magnetic disks with a multilayered thin-film structure, the wear of the diamond like carbon overcoat is catastrophic. Breakdown of thin films can be detected with AFM. Evolution of the wear has also been studied using AFM. Wear is found to be initiated at nono scratches. AFM has been modified to obtain load-displacement curves and for nanoindentation hardness measurements with depth of indentation as low as 1 mm. Scratching and indentation on nanoscales are the powerful ways to screen for adhesion and resistance to deformation of ultrathin fdms. Detection of material transfer on a nanoscale is possible with AFM. Boundary lubrication studies and measurement of lubricant-film thichness with a lateral resolution on a nanoscale have been conducted using AFM. Self-assembled monolyers and chemically-bonded lubricant films with a mobile fraction are superior in wear resistance. Finally, AFM has also shown to be useful for nanofabrication/nanomachining. Friction and wear on micro-and nanoscales have been found to be generally smaller compared to that at macroscales. Therefore, micro/nanotribological studies may help def'me the regimes for ultra-low friction and near zero wear.

자기세정산업용 소재 개발을 위한 O2 플라즈마 처리가 Poly(imide) 필름의 표면 형태 및 특성에 미치는 영향 (Effect of O2 Plasma Treatment on the Surface Morphology and Characteristics of Poly (imide) to Develop Self-cleaning Industrial Materials)

  • 강인숙
    • 한국의류학회지
    • /
    • 제36권10호
    • /
    • pp.1117-1124
    • /
    • 2012
  • This study was a preliminary study to investigate the influence of surface morphology and characteristics on the self-cleaning of substrates. PI film was treated by $O_2$ plasma to modify the surface; in addition, AFM and Fe-SEM were employed to examine the morphological changes induced on a PI film treated by $O_2$ plasma and surface energies calculated from measured contact angles between several solutions and PI film based on the geometric mean and a Lewis acid base method. The surface roughness of PI film treated by $O_2$ plasma increased with the duration of the $O_2$ plasma on PI film due to the increased surface etching. The contact angle of film treated by $O_2$ plasma decreased with the increased treatment time in water and surfactant solution; in addition, the surface energy increased with the increased treatment times largely attributed to the increased portion on the polar surface energy of PI film. The coefficient of the correlation between surface roughness and surface polarity such as contact angle and surface energy was below 0.35; however, it was over 0.99 for the contact angle and surface energy.

Nano-Wear and Friction of Magnetic Recording Hard Disk by Contact Start/Stop Test

  • Kim, Woo Seok;Hwang, Pyung;Kim, Jang-Kyo
    • KSTLE International Journal
    • /
    • 제1권1호
    • /
    • pp.12-20
    • /
    • 2000
  • Nano-wear and friction of carbon overcoated laser-textured and mechanically-textured computer hard disk were characterised after contact start/stop (CSS) wear test. Various analytical and mechanical testing techniques were employed to study the changes in topography, roughness, chemical elements, mechanical properties and friction characteristics of the coating arising from the contact start/stop wear test These techniques include: the atomic force microscopy (AFM), the continuous nano-indentation test, the nano-scratch test, the time-of-flight secondary ion mass spectroscopy (TOF-SIMS) and the auger electron spectroscopy (AES). It was shown that the surface roughness of the laser-textured (LT) bump and mechanically textured (MT) Bone was reduced approximately am and 7nm, respectively, after the CSS wear test. The elastic modulus and hardness values increased after the CSS test, indicating straining hardening of the top coating layer, A critical load was also identified fer adhesion failure between the magnetic layer and the Ni-P layer, The TOF-SIMS analysis also revealed some reduction in the intensity of C and $C_2$$F_59$, confirming the wear of lubricant elements on the coating surface.

  • PDF

플라즈마 처리에 따른 언더필과 기판 사이의 접착 강도에 관한 연구 (Effect of Plasma Treatment on Adhesion Strength between Underfill and Substrate)

  • 노보인;정승부
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2006년도 춘계 학술대회 개요집
    • /
    • pp.13-15
    • /
    • 2006
  • The effects of plasma treatment on the surfaces of the FR-4 (Flame Resistant-4) and copper substrates are investigated in terms of X-ray photoelectron spectroscopy (XPS), contact angle, and atomic force microscopy (AFM). The adhesion strengths of the underfills/FR-4 substrate and underfills/copper substrate are also studied. As experimental results, the plasma treatments of FR-4 and copper substrate surfaces yield several oxygen complexes in hydrophilic surfaces, which can play an important role in increasing the surface polarity, wettability, and adhesion characteristics of the underfills/substrates.

  • PDF