Browse > Article
http://dx.doi.org/10.1186/s42649-020-00048-1

Mechanical removal of surface residues on graphene for TEM characterizations  

Dong-Gyu Kim (Department of Physics, Yonsei University)
Sol Lee (Department of Physics, Yonsei University)
Kwanpyo Kim (Department of Physics, Yonsei University)
Publication Information
Applied Microscopy / v.50, no., 2020 , pp. 28.1-28.6 More about this Journal
Abstract
Contamination on two-dimensional (2D) crystal surfaces poses serious limitations on fundamental studies and applications of 2D crystals. Surface residues induce uncontrolled doping and charge carrier scattering in 2D crystals, and trapped residues in mechanically assembled 2D vertical heterostructures often hinder coupling between stacked layers. Developing a process that can reduce the surface residues on 2D crystals is important. In this study, we explored the use of atomic force microscopy (AFM) to remove surface residues from 2D crystals. Using various transmission electron microscopy (TEM) investigations, we confirmed that surface residues on graphene samples can be effectively removed via contact-mode AFM scanning. The mechanical cleaning process dramatically increases the residue-free areas, where high-resolution imaging of graphene layers can be obtained. We believe that our mechanical cleaning process can be utilized to prepare high-quality 2D crystal samples with minimum surface residues.
Keywords
Atomic force microscopy; Mechanical cleaning of 2D crystals; PDMS residues; Mechanical transfer;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S.Z. Butler, S.M. Hollen, L. Cao, Y. Cui, J.A. Gupta, H.R. Gutierrez, T.F. Heinz, S.S. Hong, J. Huang, A.F. Ismach, E. Johnston-Halperin, M. Kuno, V.V. Plashnitsa, R. D. Robinson, R.S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M.G. Spencer, M. Terrones, W. Windl, J.E. Goldberger, Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 7, 2898-2926 (2013). https://doi.org/10.1021/nn400280c   DOI
2 G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier, A. Seabaugh, S.K. Banerjee, L. Colombo, Erratum: electronics based on two-dimensional materials. Nat. Nanotechnol. 9, 1063-1063 (2014). https://doi.org/10.1038/nnano.2014.283   DOI
3 B. Aleman, W. Regan, S. Aloni, V. Altoe, N. Alem, C. Girit, B. Geng, L. Maserati, M. Crommie, F. Wang, A. Zettl, Transfer-free batch fabrication of large-area suspended graphene membranes. ACS Nano 4, 4762-4768 (2010). https://doi.org/10.1021/nn100459u   DOI
4 G. Algara-Siller, O. Lehtinen, A. Turchanin, U. Kaiser, Dry-cleaning of graphene. Appl. Phys. Lett. 104, 153115 (2014). https://doi.org/10.1063/1.4871997   DOI
5 Y. Chen, X.L. Gong, J.G. Gai, Progress and challenges in transfer of large-area graphene films. Adv. Sci. (Weinheim) 3, 1500343 (2016). https://doi.org/10.1002/advs.201500343   DOI
6 A.M. Goossens, V.E. Calado, A. Barreiro, K. Watanabe, T. Taniguchi, L.M.K. Vandersypen, Mechanical cleaning of graphene. Appl. Phys. Lett. 100, 073110 (2012). https://doi.org/10.1063/1.3685504   DOI
7 M. Tripathi, A. Mittelberger, K. Mustonen, C. Mangler, J. Kotakoski, J.C. Meyer, T. Susi, Cleaning graphene: comparing heat treatments in air and in vacuum. Phys. Status Solidi Rapid Res. Lett. 11, 1700124 (2017). https://doi.org/10.1002/pssr.201700124   DOI
8 M.R. Rosenberger, H.-J. Chuang, K.M. McCreary, A.T. Hanbicki, S.V. Sivaram, B.T. Jonker, Nano-"squeegee" for the creation of clean 2d material interfaces. ACS Appl. Mater. Interfaces 10, 10379-10387 (2018). https://doi.org/10.1021/acsami.8b01224   DOI
9 C.R. Dean, A.F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K.L. Shepard, J. Hone, Boron nitride substrates for highquality graphene electronics. Nat. Nanotechnol. 5, 722-726 (2010). https://doi.org/10.1038/nnano.2010.172   DOI
10 A.K. Geim, I.V. Grigorieva, Van der waals heterostructures. Nature 499, 419-425 (2013). https://doi.org/10.1038/nature12385   DOI
11 Y.-D. Lim, D.-Y. Lee, T.-Z. Shen, C.-H. Ra, J.-Y. Choi, W.J. Yoo, Si-compatible cleaning process for graphene using low-density inductively coupled plasma. ACS Nano 6, 4410-4417 (2012). https://doi.org/10.1021/nn301093h   DOI
12 P. Schweizer, C. Dolle, D. Dasler, G. Abellan, F. Hauke, A. Hirsch, E. Spiecker, Mechanical cleaning of graphene using in situ electron microscopy. Nat. Commun. 11, 1743 (2020). https://doi.org/10.1038/s41467-020-15255-3   DOI
13 A. Jain, P. Bharadwaj, S. Heeg, M. Parzefall, T. Taniguchi, K. Watanabe, L. Novotny, Minimizing residues and strain in 2d materials transferred from PDMS. Nanotechnology 29, 265203 (2018). https://doi.org/10.1088/1361-6528/aabd90   DOI
14 Y.-C. Lin, C.-C. Lu, C.-H. Yeh, C. Jin, K. Suenaga, P.-W. Chiu, Graphene annealing: How clean can it be? Nano Lett. 12, 414-419 (2012). https://doi.org/10.1021/nl203733r   DOI
15 N. Lindvall, A. Kalabukhov, A. Yurgens, Cleaning graphene using atomic force microscope. J. Appl. Phys. 111, 064904 (2012). https://doi.org/10.1063/1.3695451   DOI
16 J.C. Meyer, C.O. Girit, M.F. Crommie, A. Zettl, Imaging and dynamics of light atoms and molecules on graphene. Nature 454, 319-322 (2008). https://doi.org/10.1038/nature07094   DOI
17 M.H. Rummeli, H.Q. Ta, R.G. Mendes, I.G. Gonzalez-Martinez, L. Zhao, J. Gao, L. Fu, T. Gemming, A. Bachmatiuk, Z. Liu, New frontiers in electron beam-driven chemistry in and around graphene. Adv. Mater. 31, 1800715 (2019). https://doi.org/10.1002/adma.201800715   DOI