DOI QR코드

DOI QR Code

Mechanical removal of surface residues on graphene for TEM characterizations

  • Dong-Gyu Kim (Department of Physics, Yonsei University) ;
  • Sol Lee (Department of Physics, Yonsei University) ;
  • Kwanpyo Kim (Department of Physics, Yonsei University)
  • Received : 2020.10.19
  • Accepted : 2020.11.16
  • Published : 2020.12.31

Abstract

Contamination on two-dimensional (2D) crystal surfaces poses serious limitations on fundamental studies and applications of 2D crystals. Surface residues induce uncontrolled doping and charge carrier scattering in 2D crystals, and trapped residues in mechanically assembled 2D vertical heterostructures often hinder coupling between stacked layers. Developing a process that can reduce the surface residues on 2D crystals is important. In this study, we explored the use of atomic force microscopy (AFM) to remove surface residues from 2D crystals. Using various transmission electron microscopy (TEM) investigations, we confirmed that surface residues on graphene samples can be effectively removed via contact-mode AFM scanning. The mechanical cleaning process dramatically increases the residue-free areas, where high-resolution imaging of graphene layers can be obtained. We believe that our mechanical cleaning process can be utilized to prepare high-quality 2D crystal samples with minimum surface residues.

Keywords

Acknowledgement

This study was primarily supported by the Basic Science Research Program at the National Research Foundation of Korea (NRF-2019R1C1C1003643).

References

  1. B. Aleman, W. Regan, S. Aloni, V. Altoe, N. Alem, C. Girit, B. Geng, L. Maserati, M. Crommie, F. Wang, A. Zettl, Transfer-free batch fabrication of large-area suspended graphene membranes. ACS Nano 4, 4762-4768 (2010). https://doi.org/10.1021/nn100459u
  2. G. Algara-Siller, O. Lehtinen, A. Turchanin, U. Kaiser, Dry-cleaning of graphene. Appl. Phys. Lett. 104, 153115 (2014). https://doi.org/10.1063/1.4871997
  3. S.Z. Butler, S.M. Hollen, L. Cao, Y. Cui, J.A. Gupta, H.R. Gutierrez, T.F. Heinz, S.S. Hong, J. Huang, A.F. Ismach, E. Johnston-Halperin, M. Kuno, V.V. Plashnitsa, R. D. Robinson, R.S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M.G. Spencer, M. Terrones, W. Windl, J.E. Goldberger, Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 7, 2898-2926 (2013). https://doi.org/10.1021/nn400280c
  4. Y. Chen, X.L. Gong, J.G. Gai, Progress and challenges in transfer of large-area graphene films. Adv. Sci. (Weinheim) 3, 1500343 (2016). https://doi.org/10.1002/advs.201500343
  5. C.R. Dean, A.F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K.L. Shepard, J. Hone, Boron nitride substrates for highquality graphene electronics. Nat. Nanotechnol. 5, 722-726 (2010). https://doi.org/10.1038/nnano.2010.172
  6. G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier, A. Seabaugh, S.K. Banerjee, L. Colombo, Erratum: electronics based on two-dimensional materials. Nat. Nanotechnol. 9, 1063-1063 (2014). https://doi.org/10.1038/nnano.2014.283
  7. A.K. Geim, I.V. Grigorieva, Van der waals heterostructures. Nature 499, 419-425 (2013). https://doi.org/10.1038/nature12385
  8. A.M. Goossens, V.E. Calado, A. Barreiro, K. Watanabe, T. Taniguchi, L.M.K. Vandersypen, Mechanical cleaning of graphene. Appl. Phys. Lett. 100, 073110 (2012). https://doi.org/10.1063/1.3685504
  9. A. Jain, P. Bharadwaj, S. Heeg, M. Parzefall, T. Taniguchi, K. Watanabe, L. Novotny, Minimizing residues and strain in 2d materials transferred from PDMS. Nanotechnology 29, 265203 (2018). https://doi.org/10.1088/1361-6528/aabd90
  10. Y.-D. Lim, D.-Y. Lee, T.-Z. Shen, C.-H. Ra, J.-Y. Choi, W.J. Yoo, Si-compatible cleaning process for graphene using low-density inductively coupled plasma. ACS Nano 6, 4410-4417 (2012). https://doi.org/10.1021/nn301093h
  11. Y.-C. Lin, C.-C. Lu, C.-H. Yeh, C. Jin, K. Suenaga, P.-W. Chiu, Graphene annealing: How clean can it be? Nano Lett. 12, 414-419 (2012). https://doi.org/10.1021/nl203733r
  12. N. Lindvall, A. Kalabukhov, A. Yurgens, Cleaning graphene using atomic force microscope. J. Appl. Phys. 111, 064904 (2012). https://doi.org/10.1063/1.3695451
  13. J.C. Meyer, C.O. Girit, M.F. Crommie, A. Zettl, Imaging and dynamics of light atoms and molecules on graphene. Nature 454, 319-322 (2008). https://doi.org/10.1038/nature07094
  14. M.R. Rosenberger, H.-J. Chuang, K.M. McCreary, A.T. Hanbicki, S.V. Sivaram, B.T. Jonker, Nano-"squeegee" for the creation of clean 2d material interfaces. ACS Appl. Mater. Interfaces 10, 10379-10387 (2018). https://doi.org/10.1021/acsami.8b01224
  15. M.H. Rummeli, H.Q. Ta, R.G. Mendes, I.G. Gonzalez-Martinez, L. Zhao, J. Gao, L. Fu, T. Gemming, A. Bachmatiuk, Z. Liu, New frontiers in electron beam-driven chemistry in and around graphene. Adv. Mater. 31, 1800715 (2019). https://doi.org/10.1002/adma.201800715
  16. P. Schweizer, C. Dolle, D. Dasler, G. Abellan, F. Hauke, A. Hirsch, E. Spiecker, Mechanical cleaning of graphene using in situ electron microscopy. Nat. Commun. 11, 1743 (2020). https://doi.org/10.1038/s41467-020-15255-3
  17. M. Tripathi, A. Mittelberger, K. Mustonen, C. Mangler, J. Kotakoski, J.C. Meyer, T. Susi, Cleaning graphene: comparing heat treatments in air and in vacuum. Phys. Status Solidi Rapid Res. Lett. 11, 1700124 (2017). https://doi.org/10.1002/pssr.201700124