• 제목/요약/키워드: constrained receding horizon predictive control

검색결과 10건 처리시간 0.034초

복소형 다각형 불변영역을 이용한 입력제한 예측제어 (Input Constrained Receding Horizon Control Using Complex Polyhedral Invariant Region)

  • 이영일;방대인;윤태웅;김기용
    • 제어로봇시스템학회논문지
    • /
    • 제8권12호
    • /
    • pp.991-997
    • /
    • 2002
  • The concept of feasible & invariant region plays an important role to derive closed loop stability and achie adequate performance of constrained receding horizon predictive control. In this paper, we define a complex polyhedral feasible & invariant set for all stabilizable input-constrained linear systems by using a complex transform and propose a one-norm based receding horizon control scheme using these invariant sets. In order to get a larger stabilizable set, a convex hull of invariant sets which are defined for different state feedback gains is used as a target invariant set of the constrained receding horizon control. The proposed constrained receding horizon control scheme is formulated so that it can be solved via linear programming.

Input Constrained Receding Horizon Control with Nonzero Set Points and Model Uncertainties

  • Lee, Young-Il
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제3권3호
    • /
    • pp.159-163
    • /
    • 2001
  • An input constrained receding horizon predictive control algorithm for uncertain systems with nonzero set points is proposed. for constant nonzero set points, models with uncertainty can be converted into an augmented incremental system through the use of integrators and the problem is transformed into a zero-state regulation problem for the incremental system. But the original constraints on inputs are converted into constraints on the sum of control inputs at each time instants, which have not been dealt in earlier constrained robust receding horizon control problems. Recursive state bounding technique and worst case minimizing strategy developed in earlier works are applied to the augmented incremental system to yield an offset error free controller. The resulting algorithm is formulated so that it can be solved using LP.

  • PDF

Input Constrained Receding Horizon Control with Nonzero Set Points and Model Uncertainties

  • Lee, Young-Il
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.502-502
    • /
    • 2000
  • An input constrained receding horizon predictive control algorithm for uncertain systems with nonzero set points is proposed. For constant nonzero set points, models with uncertainty can be converted into an augmented incremental system through the use of integrators and the problem is transformed into a zero-state regulation problem for the incremental system. But the original constraints on inputs are converted into constraints on the sum of control inputs at each time Instants, which have not been dealt in earlier constrained robust receding horizon control problems. Recursive state bounding technique and worst case minimizing strategy developed in earlier works are applied to the augmented incremental system to yield an of set error free controller. The resulting algorithm is formulated so that it can be solved using LP.

  • PDF

이동 구간 제어기의 최근 기술 동향 (Recent Trends in Receding Horizon Control)

  • 권욱현;한수희
    • 제어로봇시스템학회논문지
    • /
    • 제20권3호
    • /
    • pp.235-244
    • /
    • 2014
  • This article introduces recent trends in RHC (Receding Horizon Control), also known as MPC (Model Predictive Control), that has been well recognized in industry and academy as a systematic approach for optimal design and constraint management. Constrained and robust RHCs will be briefly reviewed with milestone results. Among the diverse developments and achievements of RHCs, implementation issues will be focused on, together with the latest applications. In particular, this article introduces results on how to solve a finite horizon open-loop optimal control problem in an efficient way, together with code generation for real-time execution and easy implementation. Instead of traditional applications such as refineries and petrochemical plants, this article highlights some selected emerging applications, such as energy management systems and mechatronics, that have resulted from state-of-the-art high performance computing power and advanced numerical schemes.

입력 제한조건을 갖는 이동구간(Receding-Horizon) 예측제어 (Receding-Horizon Predictive Control with Input Constraints)

  • 신현창;김진환;허욱렬
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 하계학술대회 논문집 B
    • /
    • pp.777-780
    • /
    • 1995
  • Accounting for actuator nonlinearities in control loops has often been perceived as an implementation issue and usually excluded in the design of controllers. Nonlinearities treated in this paper are saturation, and they are modelled as an inequality constraint. The CRHPC(Constrained Receding Horizon Predictive Control) with inequality constraints algorithm is used to handle actuator rate and amplitude limits simultaneously or respectively. Optimum values of future control signals are obtained by quadratic programming. Simulated examples show that predictive control law with inequality constraints offers good performance as compared with input clipping.

  • PDF

Input Constrained Receding Horizon $H_{\infty}$ Control : Quadratic Programming Approach

  • Lee, Young-Il
    • 전기의세계
    • /
    • 제49권9호
    • /
    • pp.9-16
    • /
    • 2000
  • A receding horizon $H_{\infty}$ predictive control method is derived by solving a min-max problem in non-recursive forms. The min-max cost index is converted to a quadratic form which for systems with input saturation can be minimized using QP. Through the use of closed-loop prediction the prediction of states the use of closed-loop prediction the prediction of states in the presence of disturbances are made non-conservative and it become possible to get a tighter $H_{\infty}$ norm bound. Stability conditions and $H_{\infty}$ norm bounds on disturbance rejection are obtained in infinite horizon sence. Polyhedral types of feasible sets for sets and disturbances are adopted to deal with the input constraints. The weight selection procedures are given in terms of LMIs and the algorithm is formulated so that it can be solved via QP. This work is a modified version of an earlier work which was based on ellipsoidal type feasible sets[15].

  • PDF

Input Constrained Robust Model Predictive Control with Enlarged Stabilizable Region

  • Lee, Young-Il
    • International Journal of Control, Automation, and Systems
    • /
    • 제3권3호
    • /
    • pp.502-507
    • /
    • 2005
  • The dual-mode strategy has been adopted in many constrained MPC (Model Predictive Control) methods. The size of stabilizable regions of states of MPC methods depends on the size of underlying feasible and positively invariant sets and the number of control moves. The results, however, may perhaps be conservative because the definition of positive invariance does not allow temporal departure of states from the set. In this paper, a concept of periodic invariance is introduced in which states are allowed to leave a set temporarily but return into the set in finite time steps. The periodic invariance can be defined with respect to sets of different state feedback gains. These facts make it possible for the periodically invariant sets to be considerably larger than ordinary invariant sets. The periodic invariance can be defined for systems with polyhedral model uncertainties. We derive a MPC method based on these periodically invariant sets. Some numerical examples are given to show that the use of periodic invariance yields considerably larger stabilizable sets than the case of using ordinary invariance.

다개체 로봇 편대 제어를 위한 이동 구간 입자 군집 최적화 알고리즘의 통계적 성능 분석 (Statistical Analysis of Receding Horizon Particle Swarm Optimization for Multi-Robot Formation Control)

  • 이승목
    • 한국산업정보학회논문지
    • /
    • 제24권5호
    • /
    • pp.115-120
    • /
    • 2019
  • 본 논문에서는 이동 구간 입자 군집 최적화 (Receding horizon particle swarm optimization; RHPSO) 알고리즘 기반 다개체 로봇 편대 제어 알고리즘의 통계적 성능 분석 결과를 제시한다. 다개체 로봇의 편대 제어 문제는 로봇 간 충돌 회피를 고려할 경우, 구속 조건이 있는 비선형 최적화 문제로 정의될 수 있다. 일반적으로 구속 조건이 있는 비선형 최적화 문제는 최적해를 찾는데 많은 시간이 걸리는 문제점이 있다. 이동 구간 입자 군집 최적화 알고리즘은 로봇 편대 제어의 최적화 문제에 대한 준최적해를 빠르게 찾기 위해 제안된 알고리즘이다. 이동 구간 입자 군집 최적화 알고리즘은 알고리즘에 사용되는 후보해의 개수와 세대 수가 증가함에 따라 계산 복잡도가 증가한다. 따라서 최소의 후보해와 세대 수만으로 실시간 제어에 사용될 수 있는 준최적해를 찾는 것이 중요하다. 본 논문에서는 이동 구간 입자 군집 최적화 알고리즘의 후보해의 수와 세대 수에 따른 제어 오차를 비교하였다. 다양한 조건의 시뮬레이션 실험을 통해서 통계적으로 결과를 분석하고, 허용 가능한 편대 오차 범위 내에서 이동 구간 입자 군집 최적화 알고리즘의 최소 후보해의 수와 세대 수를 도출한다.

Constrained Robust Model Predictive Control with Enlarged Stabilizable Region

  • Lee, Young-Il
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1-4
    • /
    • 2004
  • The dual-mode strategy has been adopted in many constrained MPC methods. The size of stabilizable regions of states of MPC methods depends on the size of underlying feasible and positively invariant set and number of control moves. These results, however, could be conservative because the definition of positive invariance does not allow temporal leave of states from the set, In this paper, a concept of periodic invariance is introduced in which states are allowed to leave a set temporarily but return into the set in finite steps. The periodic invariance can defined with respect to sets of different state feedback gains. These facts make it possible for the periodically invariant sets to considerably larger than ordinary invariant sets. The periodic invariance can be defined for systems with polyhedral model uncertainties. We derive a MPC method based on these periodically invariant sets. Some numerical examples are given to show that the use of periodic invariance yields considerably larger stabilizable sets than the case of using ordinary invariance.

  • PDF

불변집합에 기반한 삼상 인버터 시스템의 모델예측제어 (Invariant Set Based Model Predictive Control of a Three-Phase Inverter System)

  • 임재식;박효성;이영일
    • 제어로봇시스템학회논문지
    • /
    • 제18권2호
    • /
    • pp.149-155
    • /
    • 2012
  • This paper provides an efficient model predictive control for the output voltage control of three-phase inverter system which includes output LC filters. Use of SVPWM (Space Vector Pulse-Width-Modulation) and the rotating d-q frame is made to obtain an input constrained dynamic model of the inverter system. From the measured/estimated output current and reference output voltage, corresponding equilibrium values of the inductor current and the control input are computed. Derivation of a feasible and invariant set around the equilibrium state is made and then a receding horizon strategy which steers the current state deep into the invariant set is proposed. In order to remove offset error, use of disturbance observer is made in the form of state estimator. The efficacy of the proposed method is verified through simulations.