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Abstract: The dual-mode strategy has been adopted in many constrained MPC methods. The size of stabilizable regions of
states of MPC methods depends on the size of underlying feasible and positively invariant set and number of control moves.
These results, however, could be conservative because the definition of positive invariance does not allow temporal leave of states
from the set. In this paper, a concept of periodic invariance is introduced in which states are allowed to leave a set temporarily
but return into the set in finite time steps. The periodic invariance can be defined with respect to sets of different state feedback
gains. These facts make it possible for the periodically invariant sets to be considerably larger than ordinary invariant sets. The
periodic invariance can be defined for systems with polyhedral model uncertainties. We derive a MPC method based on these
periodically invariant sets. Some numerical examples are given to show that the use of periodic invariance yields considerably
larger stabilizable sets than the case of using ordinary invariance.
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1. Introduction

The ’dual-mode paradigm’ is known to be an effective way
to handle physical constraints in actuators.[1]-[4] The basic
idea of the dual-mode paradigm is to use feasible control
moves to steer the current state into a feasible and invariant
set in finite time steps. A constant state feedback control is
assumed to be used after the state belongs to the positively
invariant set. The feasible and positive invariance of a set is
defined with respect to a state feedback gain and it requires
that the state feedback control should satisfy the input con-
strains for all the states in the set and states should remain
in the set when the state feedback control is applied. This
dual-mode strategy has been adopted in many constrained
MPC methods. The size of stabilizable regions of states of
MPC methods depends on the size of underlying feasible and
positively invariant set and number of control moves. These
results, however, could be conservative because the definition
of positive invariance does not allow temporal leave of states
from the set. Motivated by these considerations, the concept
of quasi-invariant sets was introduced in [3], which allows the
state to leave the set temporarily. The approach used in [3]
is based on polyhedral type terminal sets. In [3], however, no
systematic way of obtaining underlying state feedback gain
is provided and a heavy computational burden is required.

In this paper, a concept of periodic invariance is introduced
in which states are allowed to leave a set temporarily but re-
turn into the set in finite time steps. Moreover, the periodic
invariance involves the use of more than one state feedback
gains and several ellipsoidal sets. These facts make it pos-
sible for the periodically invariant sets to be considerably
larger than ordinary invariant sets. The periodic invariance
can be defined for systems with polyhedral model uncertain-
ties. We derive a MPC method based on these periodically
invariant sets. In section 2, the periodic invariance is de-
fined and a MPC method that uses the convex hull of the
positively invariant sets as a target was developed in Section
3. A Lyapunov function defined as a sum of quadratic func-
tion and it will be shown that this Lyapunov function can

be made monotonically decreasing.

2. Periodic Invariance and Feasibility
Consider the following input constrained linear uncer-
tain system:

x(k+1) = Ax(k) + Bu(k), |u(k)| <, (1)

where the matrix functions A and B belong to the polyhedral
uncertainty class:

Q= {(A, BI(A,B) =Y m(AiB), m >0,

=1
S - 1}, ®
=1

We will consider a time-varying state feedback control law
as:

u(k) = K(k)x(k), ®3)
which requires
lu(k)] = |K(k)x(k)| < a. 4)

Provided that (4) is satisfied, use of u(k) = K(k)x(k) would
yield

x(k+1) = d(k)x(k), ®(k):= A+ BK(k). (5)

Consider the uncertain linear system described by (1) and
(2). A set Qo is defined to be feasible and periodic-
invariant with respect to the time varying feedback con-
trol u(k) = K(k)x(k) of (3) if there exists a finite positive
number v such that for any initial state x(k) € Qo, the fu-
ture states x(k +14) (i = 1,---,v) of the system (5) satisfy
the input constraint (4)(feasible) and x(k + v) belongs to
Qo (periodic-invariant).

Consider an ellipsoidal set defined as:

Qo = {x|x'Pox < 1}. (6)



The periodic-invariance of €2y would be checked by con-
sidering propagation of the states in terms of ellipsoidal
sets. Assume that the closed-loop dynamics of (5) makes
x(k +1) € Qi for any x(k) € Qo, where

Q= {x|x'Pix <1} (7)
It is easy to see that the following relation:
Po—q)l(k)lpl@[(k) > 0, = 1,2,-~~,np (8)

guarantees that x(k-+1) € Q; for any x(k) € Qo and (4, B) €
Q, where ®;(k) := A; + By K (k). Similarly, an ellipsoidal set
5 can be defined for the ellipsoidal set ;. Relations

Pl—él(k+1),P2@l(k+1)>0, l=1,2,~-~,np (9)

would guarantee that x(k + 2) € Q» for any x(k +1) € Q1
and (A, B) € Q.

The above argument can be applied recursively to yield el-
lipsoidal sets of states:

Q; = {x|x'Pjx < 1}, (10)
and relations
Ijjiél(k+j)lpj+lq>l(k+j)>0a l:1a2:"'7np7 (11)

for j=1,2,---,v—1. The periodic-invariance of o requires
that Qv should belong back to Qo. Thus, relation

P, —P,>0 (12)

would guarantee the periodic-invariance of o with respect
to the switching control (3). On the other hand, it should
be noted that the above arguments hold true for the system
(1) provided that

K(k+j)x| <T, ¥x€Q;, j=0,1,--,(v—1). (13)

Conditions (8), (9), (11), (12) and (13) can be transformed
into LMIs using technique proposed in [6] and used in [4],
which technique is well known and the corresponding LMIs
are summarized in the following theorem without proof:

Theorem 1: Consider the constrained uncertain system
(1-2). An ellipsoidal set:

Qo = {x|x'Pox < 1} (14)

is feasible and periodic-invariant with respect to the time-
varying control (3) provided that there exist matrices @; :=
'Pj_1(> 0)(j:0a1727"'7v)a andY}7 X](] =0,1,2,---,v—
1) such that Y; = K(k + j) - Qj,

Qj-1 (A1Q;—1 + BiY;1)" S0, (15)
(AiQj—1 + BiY;_1) Q; J
forl=1,2,---,npand j=1,2,-+-,v,
& ol w0
and
Xj,m,p YJ m,p —
r - >0, Xjmp <1, (17)
[ YjTTﬂm Qj,m

for j=0,1,2,---,v—1.

The relaxation of the definition of invariance through the
introduction of periodic invariance allows the state to leave
Qo for a period steering it back to g after v moves. This in
turn allows for the enlargement of the volume of 2o which
can be achieved through the convex optimisation:
Algorithm 1

Q]}T’;Z,: Y, ~log(det(Qo)) subject to (15 — 17) (18)
3. Receding Horizon Control Based on the
Periodic Invariance
The optimisation of Algorithm 1 was aimed exclusively at
the minimization of —log(det(P, ')) with the view to enlarg-
ing the volume of €. The sizes of accompanied ellipsoids
Qj, j=1,2,---,v—1are expected to be large also. Consider
the convex hull = of the ellipsoids Q;, j =0,1,2,---,v — 1.
It is clear that Z is larger than the union of the ellipsoids
Qj, 3=0,1,2,--- v — 1. Furthermore, Z is invariant in the
sense that there exists a feasible control input u(k) which
makes the current state x(k) € E remain in = as per the
following Lemma.
LEMMA 1: Consider the uncertain system (1-2) and ellip-
soidal sets Q;, j =0,1,---,v —1 defined as (10-13). Denote
the convex hull of ©Q;, j =0,1,---,v—1as Z. If a state
x(k) belongs to =, then there exist a feasible control input
u(k) which guarantees that x(k + 1) € E.
Proof : The state x(k) € E can be represented as:

v

x(k) = Zvjxjxj(k), =120 (19)

j=0

where x;(k) € Q;. Consider the control input u(k) =
Z;';Ol K;\jx;(k), then x(k + 1) can be represented as:

x(k+1) = Ax(k)+ Bu(k) (20)

v—1 v—1
D N (A+BE)x;(k) =Y Ak +1).
j=0 j=0
From the definition of Q;, 7 =0,1,---,v—1, x;(k + 1)
(A+B)x; (k) € Qj11. Thus, it is easy to see that x(k+1) €
also and we can conclude that there always exist a feasible

m

state feedback law that makes x(k) remain in E.

Based on the above argument, we would like to propose a
MPC strategy using = as a target set. Assume that Qo,
corresponding ellipsoids €;, j = 1,2,---,v — 1 and their
convex hull E were obtained by solving (18). Our control
strategy is to steer the current state into Z using a feasible
control move u(k). According to the uncertainties (2) reside
in the system, x(k + 1) would belong to the polyhedral set
of states defined as:

F = {x € R"| me(Alx(k) + Byu(k)) g >0,

> o= 1}. (21)
=1



It is easy to see that F € = is guaranteed if and only if
all the vertices of F i.e. A;x(k) + Bju(k) belongs to =. If
xi(k+1) := Aix(k)+Bju(k) € Z, then v; can be represented
as:

v—1 v—1
xi(k+1) =Y Niyxu(k+1), (ZAM:l), (22)
j=0 j=0

where x;;(k+1) € Q;. If we denote \; jx;; as %X;; then the
conditions (22) and x;,; € Q; can be rewritten as:

Aix(k) + Bru(k) = Y %i;(k+1), Ju(k)| <T@  (23)

and
o P
X, 7%1; < Mg, (24)
A[’]
respectively, for [ = 1,2,--- n,. Thus, the existence of vec-
tors x;;(k + 1) and scalar values Aj for | = 1,2,---,n,
and j = 0,1,2,---,v — 1 satisfying (23-24) guarantees that

x(k+1) € E

The control input u(k) satisfying (23-24) would not be
unique. Thus, we need certain criteria to choose a partic-
ular u(k) that is optimal in some sense. Consider the state
decomposition (23) and define a quadratic function:

V(Xl(k+1|k)) = ifq,j(k"l'l)’ijq,j(k-l-l). (25)

j=0

We would like to use V(x;(k + 1|k)) as our cost index and
the control move u(k) will be chosen to be:

(26)

u (k) = arg { min maz V(x(k + 1|k)) }

u(k) I, %1,
subject to (23 — 24).

According to the relations (11-12), V(x;(k + 1|k)) can be
made monotonically decreasing, which will be shown later.
Note that the relations (23-24) can be rewritten as LMIs
in terms of u(k), %x;,;(k + 1), and X;,;. Now the receding
horizon control method based on the above argument can be
described as follows:

Algorithm 2

Step 1. (off-line) Obtain matrices P;,j = 0,1,---,v and cor-
responding ellipsoidal sets Q;, j =0,1,---,v — 1 according
to Algorithm 1.

Step 2. (on-line) For a given current state x(k) compute the
optimal control u(k) as (26), where (23-24) can be rewritten
as the following LMIs:

diag (Alx(k) + Byu(k) — ifq,j (k + 1)) = 0 (27)

j=0

AL j }A(lj(k‘-Fl),
o : > 0, (28
|:Xl,j(k+1) AL Qj 29
j:0717"'av_1,l:1727"',n;ﬂ

diag(a—u(k)) > 0 (29)

Closed-loop stability of the Algorithm 2 can be established
as per the following theorem:

Theorem 2: Consider the uncertain system (1-2). As-

sume that matrices P;,j =0,1,---,v and corresponding el-
lipsoidal sets €2;, j = 0,1,---,v — 1 were obtained as Step
1 of Algorithm 2 and Step 2 was feasible at the initial time
step, then Step2 of Algorithm 2 remain feasible and the use
of the optimal control u(k) obtained at each time steps guar-
antees the asymptotic stability of the closed-loop system.
Proof : Feasibility : Conditions (23-24) guarantees that
x(k+1) € Efor a given x(k). Once the state is steered into =,
(23-24) would have feasible solutions for all the subsequent
time steps since = is invariant as Lemma 1.
Stability : Assume that x(k + 1) = Y77  Ajx;(k + 1)
and x; € Q; for j = 0,1,---,v — 1. Consider the control
input u(k+1) = Z;’;Ol K;\jxj(k+1), then x(k+2) can be
represented as:

x(k+2) = Ax(k+1)+ Bu(k) (30)
= z_:(A-FBK]‘)}A(]‘(kJ-Fl).

j=0
From relations (11-12), we have:

V(x(k+2) - V(x(k+1)) <0, (31)
where

V(x(k+2)) =
Vi xj(k+1)'(A+ BK;)P;41(A+ BEK;)x;(k+1)
]:ffcv,l(k +1)'(A+ BK;)' Po(A+ BKj)%v_1(k + 1)
V(x(k+1)):= i x;(k+ 1) Pjx;(k+1).

=0

Thus, we can conclude that V;(x(:)) can be made monoton-
ically decreasing.

4. Numerical Examples
Cousider the uncertain system [2][4] with polyhedral set
Q defined by (2) with u=1

o [ 09347 05104 [ 0.0591 0.2641
"7 0.3835  0.8310 7| 17971 0.8717

—1.4462
B= : 2
[ —0.7012 } (32)

Fig.1 shows stabilizable sets with n;n, = 3, 5, and 10. This
figure shows that by increasing n;,.,, we can get considerable
increase of volume of stabilizable set. The resulting region
is bigger than those of earlier works[2][4].

5. Conclusions
A receding horizon control strategy was developed for
input constrained linear uncertain systems based on period-
ically invariant sets. The definition of periodically invariant



set allows state to leave the set temporarily. An ellipsoidal
set is said to be periodically invariant if there is a series of
feedback gains such that the use of these gains guarantees
that all the states in the set return into the set in finite time
steps. The convex hull of these periodically invariant sets
can be shown to be positively invariant in the sense that
there exists a feasible input that makes the states remain in
the convex hull.

A receding horizon control strategy in which the current
state is steered into the convex hull of periodically invari-
ant sets was proposed. A Lyapunov function is defined as
a sum of quadratic functions and it was shown this Lya-
punov function can be made monotonically decreasing by
using a nonlinear control law based on the partitioning of
the current state and applying different feedback gains for
the partitioned states.

The invariant set used in this paper contains the ellipsoidal
invariant sets in the earlier works[4][5] as a special case. It
will provide a larger invariant set and larger stabilizable set
in turn.
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Fig. 1. Stabilizable regions of states with n;,, = 3(inner
line), 5, and 10(outer line).
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