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Abstract: This paper provides an efficient model predictive control for the output voltage control of three-phase inverter system 
which includes output LC filters. Use of SVPWM (Space Vector Pulse-Width-Modulation) and the rotating d-q frame is made 
to obtain an input constrained dynamic model of the inverter system. From the measured/estimated output current and reference 
output voltage, corresponding equilibrium values of the inductor current and the control input are computed. Derivation of a 
feasible and invariant set around the equilibrium state is made and then a receding horizon strategy which steers the current 
state deep into the invariant set is proposed. In order to remove offset error, use of disturbance observer is made in the form 
of state estimator. The efficacy of the proposed method is verified through simulations. 
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I. INTRODUCTION
The control of inverters with an output LC filter has a 

special importance in applications such as distributed 
generation, energy storage systems, stand-alone applications 
based on renewable energy, and UPS (Uninterruptable 
Power Supplies). In particular, for stand-alone applications 
and UPS systems, it is required to achieve a good 
output-voltage regulation for any kind of loads. 

The inclusion of an LC filter at the output of the 
inverter makes more difficult the controller design. Several 
control schemes have been proposed for this inverter such 
as sliding mode control [1], multi-loop feedback control [6], 
deadbeat control [2,3] and model predictive control [4,5].

In the deadbeat control approach [2], a method to 
generate the reference state/control signal is proposed and a 
state feedback control, which reduces the state variable 
errors to zero in a finite number of sampling steps, is used 
in conjunction with the reference control signal. The 
deadbeat control is designed to have a very fast dynamic 
response, however, it would be highly sensitive to model 
uncertainties because it uses a very tight gain to steer the 
state errors to zero. Use of state estimator and disturbance 
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observer is made in [3] to compensate the sensitivity to 
model uncertainties and to estimate the load current and 
other source of errors. The state estimator gain plays an 
important role to reduce the sensitivity of the deadbeat 
control approach to model uncertainties. Unlike the earlier 
approaches, MPC (Model Predictive Control) based methods 
[4,5] do not use modulations to approximate inverter 
voltages to the desired control input. Instead, they use a 
model of the system to predict, on each sampling interval, 
the behavior of the output voltage for each possible 
switching state, and then, a cost function is used as a 
criterion for selecting the switching state that will be 
applied during the next sampling interval. This control 
strategy is simple and computationally efficient, however it 
does not provide any rigorous analysis on the stability.

In this paper, we propose a model predictive control 
method using a feasible and invariant set as a target. Space 
vector representation and the rotating d-q frame are used to 
represent the system model. From the measured/estimated 
output current and reference output voltage, corresponding 
equilibrium values of the inductor current and the control 
input are obtained. A feasible and invariant set around the 
equilibrium state and the corresponding state feedback gain 
are derived using LMI (Linear Matrix Inequality) [7] 
formulations. A receding horizon strategy which steers the 
current state into the invariant set as deep as possible (and 
thus provides better performance than the state feedback) is 
proposed. In order to remove offset error, use of 
disturbance observer is made in the form of state estimator. 
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그림 1. 출력LC 필터를갖는삼상인버터.
Fig. 1. Three-phase inverter with output LC filter.

The efficacy of the proposed method is verified through 
simulations using MATLAB.  

II. SYSTEM MODELLING
The dynamics of an inverter with output LC filter for 

UPS application, as shown in Fig. 1, can be described as 
follows:




 


, (1a)




 


, (1b)

where 



  represent vectors of three-phase input 

voltage, three-phase capacitor voltage, three-phase inductor 
current, and three-phase load current, respectively. The 

three-phase input voltage   is determined by the state of 6 

switches as

 

 








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















, (2)

where   could be 1 or 0 depending on the status 

of switches. The control objective is to make the capacitor 

voltage  follow a reference three-phase sinusoidal signal 

  defined as














cos

cos




cos




  (3)

We will consider the problem in the rotating d-q frame 

in which the vector   is located on the rotating d-axis. 
The above mentioned vectors can be converted into the d-q 
frame vectors using the following transformation vector

 










cos cos
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


(4)

as follows [8]:




  



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From the relation (6), we have
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where  


 


 

  
. From (8), the system dynamics (1) can 

be rewritten as
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Let us denote the reference for the capacitor voltage as 



 . Then, the steady-state values of   and  , i.e. 


  and 

 , respectively, can be obtained as follows: 

letting 



  and 





  in (10) and (11) 

yields 



  

  (13)




    
  (14)

where the load current    is assumed to be constant.

Assume that the model (12) can be discretized with 
sampling period  as

     (15)

where 
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그림 2. 스위칭함수의공간벡터와포화입력제한.
Fig. 2. Space vector of the switching function and its saturation 

constraints.
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The control input   of (15) is implemented by using 
the space-vector PWM (SVPWM) method [11] after the   
transform is applied. Given the set of three-phase switching 
functions as (2), the switching function space vector is 
defined as:

  


 





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



 (16)

Since the switching functions s could be '0' or '1', then 

(16) can be rewritten in the generalized form for all 
switching states as

 















 



   ⋯

   

(17)

and the control input signal   , which is the stationary 

frame (or -frame) representation of  , can be 
generated as Fig. 2 using SVPWM. It is easy to see that 
the control input generated through the SVPWM method is 
constrained in the hexagon shown in Fig. 2. However, we 
consider a rather conservative, but simpler constraint that is 
the disk inscribed in the hexagon shown in Fig. 2. The 
disk-shaped constraint can also be stated in the rotating 
dq-frame as 

′ ≤ 




 . (18)

We will use the following control law based on the 
steady-state values of (13)-(14):

   
  (19)

Inserting (19) into (15), we have

    
   (20)

Since the steady-state signals will satisfy

 
  (21)

subtracting (21) from (20) will give

    (22)

where 

     


















 (23)

In the following section, we will develop a stabilizing 
control strategy for the discrete-time system (22) considering 
the input constraint (18). 

III. FEASIBLE AND INVARIANT SETS
Many technologies developed in the previous works can 

be applied to define a feasible and invariant set for the 
system dynamics (22). [9,10] Consider the following 
ellipsoidal set:

 ′≤    ′   (24)

The feasibility and invariance of the ellipsoidal set  of 
(24) for the system (22) can be defined as follows:

Definition 1: Consider the system (22) with the 
steady-state values (13)-(14). The set (24) is feasible and 
invariant with respect to the feedback control    if 
   satisfies the input constraint (18) for all ∈ 
(feasible) and the use of this control law guarantees 
∈ for any ∈ (invariant). 

Replacing   with   in (22), we have

   (25)

where    . From (25), we have

′  ′

 ′ ′
(26)

Thus, it is easy to see that 

  ′    (27)

guarantees the invariance of  with respect to the control 

  . If we denote the distance between  

  and the 

border of the hexagon (18) as , then

′ ≤  (28)

guarantees that    


  satisfies the input 

constraint (18). Left and right multiplying of     to 
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both sides of (27) yields

′    (29)

where   . Applying the Schur complement, (29) can 
be transformed into the following LMI:



 


 ′

 
  (30)

We need to lay additional constraints on  so that the 
control   of (19) satisfies the input constraint (28) for 
all ∈. Using  and  matrices, the condition (28) can 
be rewritten as 




′  ′  ≤  (31)

A sufficient condition for all ∈  to satisfy (31) is





 ′    (32)

which can be transformed into the following LMI:




 


 ′

 
  (33)

Thus, a feasible and positively invariant set for the system 
(22) is defined by (24), (30) and (33). 

The matrices  and  satisfying (30) and (33) would 
not be unique and we have some freedom in defining a 
criterion of selecting these matrices. The closed-loop 
stability of the control     is stated as per the 
following theorem.

Theorem 1: Consider the system (22) with constraint 
(18). The state feedback control law   

 ≥   guarantees that the Lyapunov value  

′  will decreases monotonically for any initial 
state ∈, provided that the feedback gain  and 
positive definite matrix  are obtained by solving LMIs 

(30) and (33), where     and   . 
Proof: The LMI (33) guarantees the feasibility of the 

   for any ∈ and (33) ensures (27) and the 
monotonicity of   as (26). Note that this monotonicity 
implies the invariance of  with respect to the control 
  . Thus, the feasibility of     ≥   
is guaranteed for any initial state ∈. ∎

It is clear that   of Theorem 1 could be a 
Lyapunov function and the monotonicity of   
guarantees the stability of the closed system. The choice of 

 (i.e.  ) and  satisfying (30) and (33) would 
determine the volume of  and the performance of the 
control    . Our preference is large volume of 
 and good performance but there is trade-off between 
them, i.e. large volume will result in loose control and 
tight control will result in small volume of . 

In the following section, a novel method to combine a 
large invariant set with tight control will be derived.

IV. ON-LINE CONTROL ALGORITHM
We will combine a large feasible and invariant set with 

a degree of freedom to steer the error state well into the 
invariant set. In order to obtain a large volume of , 
consider the following optimization problem:

max tr   (34)

Maximizing the trace of  will result in small  and the 
volume of the corresponding ellipsoid  will become large.

Solving the problem (34) will be done off-line. The 
on-line control strategy will be to use a degree of freedom 
to steer the current state deep into the ellipsoidal set , 
which can be done by solving the following problem for 
the given  and the measured state :

min   (35)

The solution of (35) can be obtained analytically. From 
(22), we have







 ′ ′ (36)

Thus, the unconstrained optimal solution of the problem 

(35) can be obtained from 


  as

  ′′ (37)

Thus, the unconstrained optimal control is 

   
  (38)

If this   does not satisfy the input constraint (18), i.e. 

  is outside of the disk, then   will take the 

minimum value at the point   on the boundary of the 

disk. To obtain such point   it is necessary to solve a 
nonlinear algebraic equation. An approximated solution can 
be found by searching along the boundary of the circle 
with the initial value given as

 ∥∥


⋅


. (39)

Thus, the overall algorithm can be summarized as 
follows:
1. IBCA (Invariance Based Control Algorithm)

Off-line Procedure
 - Obtain ,  and corresponding  and  by solving 

(34).
On-line Procedure (At each time step )

Step 1: Measure the load current     and compute 
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the corresponding steady-state values  

  and  

  as 

(13)-(14) with given 
 .

Step 2: Compute the unconstrained optimal solution 

  as (37) for the measured 

Step 3: If   given by (38) satisfies the input 
constraint, use it. Otherwise, search the constrained optimal 

control   with the initial value (39) and use it.
The stability of the proposed Control Algorithm can be 

established as per the following Theorem.
Theorem 2: Consider the input constrained discrete-time 

system described by (15) and (18) with the steady state 
satisfying (21) for the measured value of  and the control 

(19). The IBCA algorithm will guarantee that the error 
dynamics (22) become asymptotically stable, i.e. output 

voltage   will be bounded and follow the reference 

signal 

  asymptotically, provided that the output current 
   is constant and the initial error state   belongs to 

the feasible and invariant set  defined by the matrix  
of the Step 1 of IBCA algorithm. 

Proof: From the feasible invariance of the  with 
respect to the feedback gain , which is obtained in Step 
1 of IBCA, the use of     will guarantee the 
monotonic decrease of   ′  for all 
∈. 

Since ∈  or   is the constrained optimal 
solution of (35), the on-line procedure of IBCA searches a 
further reduction of   than the use of    . 
Thus   will remain in  for all    and   will 
decrease to zero to yield the asymptotic stability of the 
system (22). ∎

V. USE OF STATE/DISTURBANCE OBSERVER

In the previous derivation, the capacitor voltage , 

inductor current  , and load current   are assumed to be 

measured. In many real applications, however, not both of 
  and   is measured and it is required to estimate one 

of the currents. Furthermore, the steady-state condition (21) 
would not be satisfied in real plants because of the 
uncertainties in the plant parameters, measurements, and 
errors introduced in the discretization process. Hence, if the 
control law proposed in the last section is used, then there 
will be some offset error. To remove the offset error, PID 
controllers usually used [11,12]. We adopt, however, a 
disturbance observer to compensate all the uncertainties as 
in [4].

Under the assumption that the dynamics of the load 
current is much longer than the sampling time, the load 
current can be considered to be a constant signal. Thus, the 

system (20) can be rewritten as follows with augmented 
states:

               
(40)

            











 



 

 



 


 

 
  



 





,

and ,  , and  are defines in (20). The following 

Luenberger-type state estimator can be used for the system 
(40) for filtering or observing the states:

    
    (41)

where   denotes the measured output and   and   are the 

estimated values of   and  , respectively. Depending on 

the employed measurements,   is as follows:

a)   and    are measured :  
  ′

b)   and    are measured :  
  ′  

In both cases, the measured output can be represented as

   (42)

with proper   matrix corresponding to the employed 

measurement. By inserting (42) and   
  into 

(41), we have

     (43)

 
VI. SIMULATION

The proposed control strategy was verified through 
simulation studies using MATLAB Simulink. The 
parameters of system (1) and (2) determined as L = 2.4 
mH, C = 16 µF, and Vdc = 500 V. The reference voltage 


 of (3) was determined with   = 220 V and it can be 

transformed into the reference voltage in d-q frame 

 as 

the relation (5). Based on 

 and the estimated output 

current   , 

  and 
  are obtained as (13)-(14). The 

control gain  was determined by solving problem (34) as

 


 


     

     
.

The simulation time is 0.06 sec with 15 kHz sampling 
rate.

It was assumed that the inductor current and output 
voltage are measured. The gain   of the state observer is 
chosen so that the observer poles are as follows:

     

 The error   is computed as (23) at each time step 

w.r.t. the steady-state values  

  and 

  as (13)-(14). 
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그림 3. 저항성부하에대한시뮬레이션:   (상[A]), (중[ V]),  
 (하[ A]). 부하가 ∞, 50,  200 Ω으로차례로변함.

Fig. 3. Simulation results with resistive load:  (upper: [A]), 

(middle: [V]) and  (lower: [A]). The load changes as ∞, 

50 and 200 Ω.
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그림 4. 저항성부하에대한시뮬레이션 dq축표현:   (상[A]), 
(중[ V]),   (하[ A]). 실선(점선)은 d축(q축) 값.

Fig. 4. Simulation results in d-q plane values with resistive  load 
 (upper: [A]), (middle: [V]) and  (lower: [A]); 

Solid(dashed) lines represents the d-axis(q-axis) values. 
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그림 5. 정류기부하에대한시뮬레이션결과:  (상[A]), (중[ 

V]),   (하[ A]). 

Fig. 5. Simulation results with rectifier load  (upper: [A]), 

(middle: [V]) and  (lower: [A]).
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그림 6. 정류기부하에대한시뮬레이션결과 dq축표현:  (상

[A]), (중[ V]),   (하[ A]). 실선(점선)은d축(q축) 값.

Fig. 6. Simulation results in d-q plane values with rectifier load  
 (upper: [A]), (middle: [V]) and  (lower: [A]); 

Solid(dashed) lines represents the d-axis(q-axis) values.

Then we could make control input on d-q axis from (19). 
The control input in d-q axis was changed to real switching 
input for three-phase IGBT Inverter by SVPWM [11]. The 
SVPWM switching frequency is 15 kHz to control 
three-phase inverter. 

Fig. 3 shows the simulation result with resistive load. 
The resistive load value is ∞ at 0 sec. We changed load 
values to 50 Ω at 0.02 sec and 200 Ω at 0.04 sec. Fig. 4 
shows the same simulation results in d-q plane values. This 
simulation result shows the proposed control method can 

track the reference value   very well. The voltage 

THD(Total Harmonic Distortion) value is less than 1%. 
Figs. 5 and 6 show simulation results with three-phase 
rectifier connected to 100 Ω resistor three-phase and d-q 
plane, respectively. The voltage THD(Total Harmonic 
Distortion) value is also less than 1 %.

VII. CONCLUSION
In this paper an efficient MPC method, based on the 

concept of invariant set, has been proposed for three-phase 
inverters with output LC filter. The control objective is to 
regulate the output voltage to a specified value using 
SVPWM technique.
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In the off-line procedure, a large feasible and invariant 
set is derived. The on-line algorithm (ICBA) computes the 
optimal control input in the sense that the next state moves 
inside the invariant set as deep as possible. Unlike earlier 
works, ICBA provides a rigorous stability proof for the 
constrained system. The simulation examples have shown 
the good performance of the proposed ICBA.

In practice, a state estimator or filter is used as we have 
done in the simulation. However, the stability analysis of 
the closed-loop system combined with the estimator has not 
investigated and thus requires further study.
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