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Inverter System

o A Al &

H, 0 o o

(Jae Sik Lim', Hyo Seong Park’, and Young Il Lee?)
'Research Center of Electrical and Information Technology, Seoul National University of Science and Technology

2Dept. of Control and Instrumentation Engineering, Seoul National University of Science and Technology

Abstract: This paper provides an efficient model predictive control for the output voltage control of three-phase inverter system
which includes output LC filters. Use of SVPWM (Space Vector Pulse-Width-Modulation) and the rotating d-q frame is made
to obtain an input constrained dynamic model of the inverter system. From the measured/estimated output current and reference
output voltage, corresponding equilibrium values of the inductor current and the control input are computed. Derivation of a
feasible and invariant set around the equilibrium state is made and then a receding horizon strategy which steers the current
state deep into the invariant set is proposed. In order to remove offset error, use of disturbance observer is made in the form
of state estimator. The efficacy of the proposed method is verified through simulations.
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I. INTRODUCTION

The control of inverters with an output LC filter has a
special importance in applications such as distributed
generation, energy storage systems, stand-alone applications
based on renewable energy, and UPS (Uninterruptable
Power Supplies). In particular, for stand-alone applications
and UPS systems, it is required to achieve a good
output-voltage regulation for any kind of loads.

The inclusion of an LC filter at the output of the
inverter makes more difficult the controller design. Several
control schemes have been proposed for this inverter such
as sliding mode control [1], multi-loop feedback control [6],
deadbeat control [2,3] and model predictive control [4,5].

In the deadbeat control approach [2], a method to
generate the reference state/control signal is proposed and a
state feedback control, which reduces the state variable
errors to zero in a finite number of sampling steps, is used
in conjunction with the reference control signal. The
deadbeat control is designed to have a very fast dynamic
response, however, it would be highly sensitive to model
uncertainties because it uses a very tight gain to steer the
state errors to zero. Use of state estimator and disturbance
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observer is made in [3] to compensate the sensitivity to
model uncertainties and to estimate the load current and
other source of errors. The state estimator gain plays an
important role to reduce the sensitivity of the deadbeat
control approach to model uncertainties. Unlike the earlier
approaches, MPC (Model Predictive Control) based methods
[4,5] do not use modulations to approximate inverter
voltages to the desired control input. Instead, they use a
model of the system to predict, on each sampling interval,
the behavior of the output voltage for each possible
switching state, and then, a cost function is used as a
criterion for selecting the switching state that will be
applied during the next sampling interval. This control
strategy is simple and computationally efficient, however it
does not provide any rigorous analysis on the stability.

In this paper, we propose a model predictive control
method using a feasible and invariant set as a target. Space
vector representation and the rotating d-q frame are used to
represent the system model. From the measured/estimated
output current and reference output voltage, corresponding
equilibrium values of the inductor current and the control
input are obtained. A feasible and invariant set around the
equilibrium state and the corresponding state feedback gain
are derived using LMI (Linear Matrix Inequality) [7]
formulations. A receding horizon strategy which steers the
current state into the invariant set as deep as possible (and
thus provides better performance than the state feedback) is
proposed. In order to remove offset error, use of

disturbance observer is made in the form of state estimator.
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The efficacy of the proposed method is verified through
simulations using MATLAB.

II. SYSTEM MODELLING
The dynamics of an inverter with output LC filter for

UPS application, as shown in Fig. 1, can be described as

follows:
di, — _
=, la
g Vi e (1a)
dv, — _
c — , lb
Cfd kit (1b)

where v; v, i i, rtepresent vectors of three-phase input

voltage, three-phase capacitor voltage, three-phase inductor
current, and three-phase load current, respectively. The
three-phase input voltage v_, is determined by the state of 6

switches as
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where Si(a,b,c) could be 1 or 0

of switches. The control objective is to make the capacitor

depending on the status

voltage v_p follow a reference three-phase sinusoidal signal

F defined as
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We will consider the problem in the rotating d-q frame

in which the vector v~ is located on the rotating d-axis.
The above mentioned vectors can be converted into the d-q

frame vectors using the following transformation vector
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Fig. 1. Three-phase inverter with output LC filter.
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as follows [8]:

@:%TF:[V*O]Q quzgﬂ_i 5)
Vo= T ira= 5 Ty ©
gy % Ti,. (7

From the relation (6), we have
5 %§=ﬁ%£fwM§; ®)
%Tdd?:d%?—wnfa7 ©)

where M= [_01 (1]] From (8), the system dynamics (1) can

be rewritten as

di - 11—
fodg __ :
= Mgt U T Ve (10)
dv, 11—
7 :W]m’c‘qurZZf‘dq*?%‘dq an
or
da(t) .
o= Ax() + Bu(t) + B,i,(t), (12)
where
ira(t) — —
w(t) = | LU0 ult) = v, 4, (1), d,(t) =1, (1),
U(;zlq(t) a 7dq
wM —% 1 0
AC_ 1 s Bo= | L ’Bq':—i'
El wM 0 C
Let us denote the reference for the capacitor voltage as
Eq. Then, the steady-state values of % and %, ie.
i(‘;_’dq and Kd(], respectively, can be obtained as follows:
- digg, — dvg,
. _ fidg cdg __ .
letting v, 4,= v,, and 7 =0 in (10) and (11)
yields
Uf.ag=— 0MCog 1, 4, (13)
) o= (1= LC) vy, ~wMLi, ,, (14)

where the load current i is assumed to be constant.

0,dq
Assume that the model (12) can be discretized with

sampling period h as
z(k+1) = Az(k) + Bu(k) + By, (15)

where
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h h
AzzeA“h,B:zf e Bdt, B, ::/ B dt.
0 0

The control input u(k) of (15) is implemented by using
the space-vector PWM (SVPWM) method [11] after the af
transform is applied. Given the set of three-phase switching
functions as (2), the switching function space vector is
defined as:

3T

.zﬁ :
U= %(Sﬁs,,e]i‘ +5¢

c

) Ve (16)

Since the switching functions Sjs could be '0' or 'l', then

(16) can be rewritten in the generalized form for all
switching states as

2 in-1% _
U = ge SI/d(ﬂn_l’Z’.”’E;

f (17)
0 n=7178.

and the control input signal um,(k'), which is the stationary
frame (or oaf-frame) representation of wu(k), can be
generated as Fig. 2 using SVPWM. It is easy to see that
the control input generated through the SVPWM method is
constrained in the hexagon shown in Fig. 2. However, we
consider a rather conservative, but simpler constraint that is
the disk inscribed in the hexagon shown in Fig. 2. The
disk-shaped constraint can also be stated in the rotating
dqg-frame as

N

w(k) u(k) < - (18)

4
3 @

We will use the following control law based on the
steady-state values of (13)-(14):

u(k) = Au(k) +7 4, (19)

A

292, 2919 e4e] e o) 23 QAP
Fig. 2. Space vector of the switching function and its saturation
constraints.

Inserting (19) into (15), we have
a(k+1) = Az(k) + B(Au(k) +00,) + B, (20)
Since the steady-state signals will satisfy
&= Az®+ Bif ,,+ Bis,, @1
subtracting (21) from (20) will give

e(k+1) = Ae(k) + BAu(k), 22)

where

0
bdq
T

Vg

e(k) =z(k) —2° z%= ) 23)

In the following section, we will develop a stabilizing
control strategy for the discrete-time system (22) considering
the input constraint (18).

III. FEASIBLE AND INVARIANT SETS
Many technologies developed in the previous works can
be applied to define a feasible and invariant set for the
system dynamics (22). [9,10] Consider the following
ellipsoidal set:

E={ele’ Pe<1, P=PFP >0}. 24)

The feasibility and invariance of the ellipsoidal set E of
(24) for the system (22) can be defined as follows:

Definition 1: Consider the system (22) with the
steady-state values (13)-(14). The set (24) is feasible and
invariant with respect to the feedback control Au= Ke if
Au= Ke satisfies the input constraint (18) for all e€EF
(feasible) and the wuse of this control law guarantees
e(k+1)EFE for any e(k)EE (invariant).

Replacing Au(k) with Ke(k) in (22), we have
e(k+1) =de(k), 25)

where @ := A+ BK. From (25), we have

e(k) Pe(k)—e(k+1) Pe(k+1)

26
— (k) (P— PO)e(k). (26)

Thus, it is easy to see that
P—(A+ BK)' P(A+ BK) >0 27

guarantees the invariance of £ with respect to the control

Au= Ke. If we denote the distance between EfAdq and the

border of the hexagon (18) as r, then
e(k)K Ke(k) < * (28)

guarantees that (k) :EquJrKe(k') satisfies the input

constraint (18). Left and right multiplying of Q:=P"" to
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both sides of (27) yields

Q—(4Q+BY) Q (4Q+BY) >0, 29

where Y:= KQ). Applying the Schur complement, (29) can
be transformed into the following LMI:

Q
AQ+BY

(AQ+BY)’
Q

We need to lay additional constraints on 7 so that the

> 0. 30)

control u(k) of (19) satisfies the input constraint (28) for
all e€F. Using Y and () matrices, the condition (28) can
be rewritten as

ize(k)'(Q’]YYQ’])e(lc) <1.

GD
”
A sufficient condition for all e € F to satisfy (31) is
1 _ -
(@ 'YYQ ) <P (32)
”
which can be transformed into the following LMI:
QY
[ v 2> 0 (33)

Thus, a feasible and positively invariant set for the system
(22) is defined by (24), (30) and (33).

The matrices ¢ and Y satisfying (30) and (33) would
not be unique and we have some freedom in defining a
The closed-loop
stability of the control Awu(k)= Ke(k) is stated as per the
following theorem.

criterion of selecting these matrices.

Theorem 1: Consider the system (22) with constraint
(18). The state feedback control law Au(k)= Ke(k)
(k>0) guarantees that the Lyapunov value V(k):=

e(k) Pe(k) will decreases monotonically for any initial
state e(0)EE, provided that the feedback gain K and
positive definite matrix 7 are obtained by solving LMIs
(30) and (33), where Q=P ' and Y= KQ.

Proof: The LMI (33) guarantees the feasibility of the
Au= Ke for any e=FE and (33) ensures (27) and the
monotonicity of (k) as (26). Note that this monotonicity
implies the invariance of £ with respect to the control
Au= Ke. Thus, the feasibility of Au(k)= Ke(k) (k> 0)

is guaranteed for any initial state e(0)E E. [ |
It is clear that V(k) of Theorem 1 could be a
Lyapunov function and the monotonicity of V(&)

guarantees the stability of the closed system. The choice of
Q (e P ') and Y satisfying (30) and (33) would
determine the volume of E and the performance of the
control Au(k) = Ke(k). Our preference is large volume of
E and good performance but there is trade-off between
them, ie. large volume will result in loose control and

tight control will result in small volume of .

=13
=

g4 099

In the following section, a novel method to combine a
large invariant set with tight control will be derived.

IV. ON-LINE CONTROL ALGORITHM
We will combine a large feasible and invariant set with
a degree of freedom to steer the error state well into the
invariant set. In order to obtain a large volume of £,
consider the following optimization problem:

max,,y tr(Q) s.t. (30),(33). (34)

Maximizing the trace of ¢ will result in small P and the
volume of the corresponding ellipsoid £ will become large.

Solving the problem (34) will be done off-line. The
on-line control strategy will be to use a degree of freedom
to steer the current state deep into the ellipsoidal set Z,
which can be done by solving the following problem for

the given P and the measured state e(k):

The solution of (35) can be obtained analytically. From
(22), we have

%%:BPAe(kHB’PBAu(k) (36)
Thus, the unconstrained optimal solution of the problem
(35) can be obtained from %:0 as
Au®(k) =— (B PB)™'B PAe(k). (37
Thus, the unconstrained optimal control is
k) = Au(k) + 7, (38)

If this u’(k) does not satisfy the input constraint (18), i.e.
uw’(k) is outside of the disk, then V(k+1) will take the
minimum value at the point u (k) on the boundary of the
disk. To obtain such point w" (k) it is necessary to solve a
nonlinear algebraic equation. An approximated solution can
be found by searching along the boundary of the circle
with the initial value given as

u’ (k) 2
wlk) =% 2y, 39
Tw T V3 9
Thus, the overall algorithm can be summarized as
follows:

1. IBCA (Invariance Based Control Algorithm)

Off-line Procedure

- Obtain ¢, Y and corresponding P and A by solving
(34).

On-line Procedure (At each time step k)

Step 1: Measure the load current i, (k) and compute
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the corresponding steady-state values i £ and v,

(13)-(14) with given v:_’dq.

Step 2: Compute the unconstrained optimal solution
Au’(k) as (37) for the measured e(k).

Step 3: If u°(k) given by (38) satisfies the input
constraint, use it. Otherwise, search the constrained optimal
control ' (k) with the initial value (39) and use it.

The stability of the proposed Control Algorithm can be
established as per the following Theorem.

Theorem 2: Consider the input constrained discrete-time
system described by (15) and (18) with the steady state

satisfying (21) for the measured value of 4, and the control

(19). The IBCA algorithm will guarantee that the error
dynamics (22) become asymptotically stable, i.e. output

voltage 5“4 will be bounded and follow the reference

—k
signal v, asymptotically, provided that the output current

Tiqu is constant and the initial error state e(0) belongs to
the feasible and invariant set £ defined by the matrix P
of the Step 1 of IBCA algorithm.

Proof: From the feasible invariance of the £ with
respect to the feedback gain A, which is obtained in Step
1 of IBCA, the use of Au(k)= Ke(k) will guarantee the
monotonic  decrease  of  V(k) =e(k) Pe(k) for all
e(k)EE.

Since u’(k)EH or u (k) is the constrained optimal
solution of (35), the on-line procedure of IBCA searches a
further reduction of V(k) than the use of Au(k)= Ke(k).
Thus e(k) will remain in £ for all k>0 and V(k) will
decrease to zero to yield the asymptotic stability of the
system (22). |

V. USE OF STATE/DISTURBANCE OBSERVER

In the previous derivation, the capacitor voltage v

o
inductor current gc, and load current i, are assumed to be
measured. In many real applications, however, not both of
_z'f and 7, is measured and it is required to estimate one
of the currents. Furthermore, the steady-state condition (21)
would not be satisfied in real plants because of the
uncertainties in the plant parameters, measurements, and
errors introduced in the discretization process. Hence, if the
control law proposed in the last section is used, then there
will be some offset error. To remove the offset error, PID
controllers usually used [11,12]. We adopt, however, a
disturbance observer to compensate all the uncertainties as
in [4].

Under the assumption that the dynamics of the load
current is much longer than the sampling time, the load

current can be considered to be a constant signal. Thus, the

system (20) can be rewritten as follows with augmented
states:

z(k+1) = Az(k) +bo, ,, (k)

2fadq
~ |- AB B
z= vmlq 7A:: [0 ]1:|7 B:= {O] 5

(40)

Zo,dq

and A, B, and B, are defines in (20). The following

Luenberger-type state estimator can be used for the system

(40) for filtering or observing the states:

2(k+1) = Az(k) + Bo_ (k) + F(y(k) —y(k)), (@1

i,dq

where g:/ denotes the measured output and z and y are the
estimated values of z and y, respectively. Depending on
the employed measurements, y is as follows:

- = -~ — ’
a) U4 and ©,, are measured : y:= [vﬁdq Zo«dq]
b) Ve d

In both cases, the measured output can be represented as

- ~ — - ’
o and 7, are measured : y:= [Uc,dq Zf,dq]

y=Cxz (42)

with proper C matrix corresponding to the employed

measurement. By inserting (42) and y(k) = Cz(k) into
(41), we have

2(k+1) = (4— FOz(k) + Bv,

g (k) + Fy(k). (43)
V1. SIMULATION

The proposed control strategy was verified through

simulation  studies using MATLAB  Simulink. The

parameters of system (1) and (2) determined as L = 2.4

mH, C = 16 pF, and V4 = 500 V. The reference voltage

5* of (3) was determined with V' =220 V and it can be

transformed into the reference voltage in d-q frame as

dq

—%
the relation (5). Based on v, and the estimated output

current 20_@, Ef‘dq and i}, are obtained as (13)-(14). The
control gain A was determined by solving problem (34) as
K= —35.650 —0.447 0.500 0.008
0.444 —35.650—0.008 0.500]
The simulation time is 0.06 sec with 15 kHz sampling
rate.
It was assumed that the inductor current and output

voltage are measured. The gain F' of the state observer is
chosen so that the observer poles are as follows:

{0.4,0.4, 0, 0,0, 0}.

The error e(k) is computed as (23) at each time step

w.rt. the steady-state values i .4, and Ei,d as (13)-(14).

q
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Fig. 3. Simulation results with resistive load: i #(upper: [A)), Ec
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50 and 200 €2.

o
=]
<
o
Q
)

0.03 0.04 0.05 0.06
Time(sec)

Y 4. AR S B doF EE: 1A,
v(FLVD. i, (B AD. 2ACHD L dF(qF) 3k

Fig. 4. Simulation results in d-q plane values with resistive load
i p(upper: [A]), v (middle: [V]) and i,(lower: [A]);
Solid(dashed) lines represents the d-axis(g-axis) values.

Then we could make control input on d-q axis from (19).
The control input in d-q axis was changed to real switching
input for three-phase IGBT Inverter by SVPWM [11]. The
SVPWM  switching frequency is 15 kHz to control
three-phase inverter.

Fig. 3 shows the simulation result with resistive load.
The resistive load value is oo at 0 sec. We changed load
values to 50 QO at 0.02 sec and 200 Q) at 0.04 sec. Fig. 4
shows the same simulation results in d-q plane values. This
simulation result shows the proposed control method can

track the reference value V' very well. The voltage

0 0.01 0.02 0.03 0.04 0.05 0.06

A o v s

Time(sec)

9 5. AF7) Ftel] thg AlgE ol Ak i (BA]). v (F]
V], i ,(3H A

Fig. 5. Simulation results with rectifier load i f(upper: [A]), EC
(middle: [V]) and Eo(lower: [A]).
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Fig. 6. Simulation results in d-q plane values with rectifier load
i s(upper: [A]), Ea(middle: [V]) and _ia(lower: [A]);
Solid(dashed) lines represents the d-axis(g-axis) values.

THD(Total Harmonic Distortion) value is less than 1%.
Figs. 5 and 6 show simulation results with three-phase
rectifier connected to 100 (Q resistor three-phase and d-q
plane, respectively. The voltage THD(Total Harmonic

Distortion) value is also less than 1 %.

VII. CONCLUSION
In this paper an efficient MPC method, based on the
concept of invariant set, has been proposed for three-phase
inverters with output LC filter. The control objective is to
regulate the output voltage to a specified value using
SVPWM technique.
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In the off-line procedure, a large feasible and invariant
set is derived. The on-line algorithm (ICBA) computes the
optimal control input in the sense that the next state moves
inside the invariant set as deep as possible. Unlike earlier
works, ICBA provides a rigorous stability proof for the
constrained system. The simulation examples have shown
the good performance of the proposed ICBA.

In practice, a state estimator or filter is used as we have
done in the simulation. However, the stability analysis of
the closed-loop system combined with the estimator has not
investigated and thus requires further study.
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