• 제목/요약/키워드: constant boundary-value problem

검색결과 23건 처리시간 0.022초

SOLVABILITY FOR THE PARABOLIC PROBLEM WITH JUMPING NONLINEARITY CROSSING NO EIGENVALUES

  • Jung, Tacksun;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • 제16권4호
    • /
    • pp.545-551
    • /
    • 2008
  • We investigate the multiple solutions for a parabolic boundary value problem with jumping nonlinearity crossing no eigenvalues. We show the existence of the unique solution of the parabolic problem with Dirichlet boundary condition and periodic condition when jumping nonlinearity does not cross eigenvalues of the Laplace operator $-{\Delta}$. We prove this result by investigating the Lipschitz constant of the inverse compact operator of $D_t-{\Delta}$ and applying the contraction mapping principle.

  • PDF

A MONOTONICITY FORMULA AND A LIOUVILLE TYPE THEOREM OF V-HARMONIC MAPS

  • Zhao, Guangwen
    • 대한수학회보
    • /
    • 제56권5호
    • /
    • pp.1327-1340
    • /
    • 2019
  • We establish a monotonicity formula of V-harmonic maps by using the stress-energy tensor. Use the monotonicity formula, we can derive a Liouville type theorem for V-harmonic maps. As applications, we also obtain monotonicity and constancy of Weyl harmonic maps from conformal manifolds to Riemannian manifolds and ${\pm}holomorphic$ maps between almost Hermitian manifolds. Finally, a constant boundary-value problem of V-harmonic maps is considered.

TRIPLE SOLUTIONS FOR THREE-ORDER PERIODIC BOUNDARY VALUE PROBLEMS WITH SIGN CHANGING NONLINEARITY

  • Tan, Huixuan;Feng, Hanying;Feng, Xingfang;Du, Yatao
    • Journal of applied mathematics & informatics
    • /
    • 제32권1_2호
    • /
    • pp.75-82
    • /
    • 2014
  • In this paper, we consider the periodic boundary value problem with sign changing nonlinearity $$u^{{\prime}{\prime}{\prime}}+{\rho}^3u=f(t,u),\;t{\in}[0,2{\pi}]$$, subject to the boundary value conditions: $$u^{(i)}(0)=u^{(i)}(2{\pi}),\;i=0,1,2$$, where ${\rho}{\in}(o,{\frac{1}{\sqrt{3}}})$ is a positive constant and f(t, u) is a continuous function. Using Leggett-Williams fixed point theorem, we provide sufficient conditions for the existence of at least three positive solutions to the above boundary value problem. The interesting point is the nonlinear term f may change sign.

GLOBAL SHAPE OF FREE BOUNDARY SATISFYING BERNOULLI TYPE BOUNDARY CONDITION

  • Lee, June-Yub;Seo, Jin-Keun
    • 대한수학회지
    • /
    • 제37권1호
    • /
    • pp.31-44
    • /
    • 2000
  • We study a free boundary problem satisfying Bernoulli type boundary condition along which the gradient of a piecewise harmonic solution jumps zero to a given constant value. In such problem, the free boundary splits the domain into two regions, the zero set and the harmonic region. Our main interest is to identify the global shape and the location of the zero set. In this paper, we find the lower and the upper bound of the zero set. In a convex domain, easier estimation of the upper bound and faster disk test technique are given to find a rough shape of the zero set. Also a simple proof on the convexity of zero set is given for a connected zero set in a convex domain.

  • PDF

A numerical study of the second-order wave excitation of ship springing by a higher-order boundary element method

  • Shao, Yan-Lin;Faltinsen, Odd M.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제6권4호
    • /
    • pp.1000-1013
    • /
    • 2014
  • This paper presents some of the efforts by the authors towards numerical prediction of springing of ships. A time-domain Higher Order Boundary Element Method (HOBEM) based on cubic shape function is first presented to solve a complete second-order problem in terms of wave steepness and ship motions in a consistent manner. In order to avoid high order derivatives on the body surfaces, e.g. mj-terms, a new formulation of the Boundary Value Problem in a body-fixed coordinate system has been proposed instead of traditional formulation in inertial coordinate system. The local steady flow effects on the unsteady waves are taken into account. Double-body flow is used as the basis flow which is an appropriate approximation for ships with moderate forward speed. This numerical model was used to estimate the complete second order wave excitation of springing of a displacement ship at constant forward speeds.

NEHARI MANIFOLD AND MULTIPLICITY RESULTS FOR A CLASS OF FRACTIONAL BOUNDARY VALUE PROBLEMS WITH p-LAPLACIAN

  • Ghanmi, Abdeljabbar;Zhang, Ziheng
    • 대한수학회보
    • /
    • 제56권5호
    • /
    • pp.1297-1314
    • /
    • 2019
  • In this work, we investigate the following fractional boundary value problems $$\{_tD^{\alpha}_T({\mid}_0D^{\alpha}_t(u(t)){\mid}^{p-2}_0D^{\alpha}_tu(t))\\={\nabla}W(t,u(t))+{\lambda}g(t){\mid}u(t){\mid}^{q-2}u(t),\;t{\in}(0,T),\\u(0)=u(T)=0,$$ where ${\nabla}W(t,u)$ is the gradient of W(t, u) at u and $W{\in}C([0,T]{\times}{\mathbb{R}}^n,{\mathbb{R}})$ is homogeneous of degree r, ${\lambda}$ is a positive parameter, $g{\in}C([0,T])$, 1 < r < p < q and ${\frac{1}{p}}<{\alpha}<1$. Using the Fibering map and Nehari manifold, for some positive constant ${\lambda}_0$ such that $0<{\lambda}<{\lambda}_0$, we prove the existence of at least two non-trivial solutions

Numerical analysis of natural convection heat transfer from a fin in parallel enclosure

  • Bae, Myung-Whan;Mochimaru, Yoshihiro
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제40권5호
    • /
    • pp.412-417
    • /
    • 2016
  • A fin of finite width with infinitely small thickness is assumed to be placed horizontally between two horizontal parallel plates of infinite extension in the exactly central position. The lower plate and the half of the upper plate are kept at a constant lower temperature, and the remaining upper plate is kept at a constant higher temperature. The fin is also kept at a constant temperature (variable). Steady-state two-dimensional laminar natural convection is analyzed as a problem of boundary value under a boundary-fitted conformal mapping system, using a spectral finite difference scheme, with a condition of doubly-connectedness. The steady-state solution is obtained as a limit of the transient solution.

ASYMPTOTIC-NUMERICAL METHOD FOR SINGULARLY PERTURBED DIFFERENTIAL DIFFERENCE EQUATIONS OF MIXED-TYPE

  • SALAMA, A.A.;AL-AMERY, D.G.
    • Journal of applied mathematics & informatics
    • /
    • 제33권5_6호
    • /
    • pp.485-502
    • /
    • 2015
  • A computational method for solving singularly perturbed boundary value problem of differential equation with shift arguments of mixed type is presented. When shift arguments are sufficiently small (o(ε)), most of the existing method in the literature used Taylor's expansion to approximate the shift term. This procedure may lead to a bad approximation when the delay argument is of O(ε). The main idea for this work is to deal with constant shift arguments, which are independent of ε. In the present method, we construct the formally asymptotic solution of the problem using the method of composite expansion. The reduced problem is solved numerically by using operator compact implicit method, and the second problem is solved analytically. Error estimate is derived by using the maximum norm. Numerical examples are provided to support the theoretical results and to show the efficiency of the proposed method.

An Analytical Solution for Regular Progressive Water Waves

  • Shin, JangRyong
    • Journal of Advanced Research in Ocean Engineering
    • /
    • 제1권3호
    • /
    • pp.157-167
    • /
    • 2015
  • In order to provide simple and accurate wave theory in design of offshore structure, an analytical approximation is introduced in this paper. The solution is limited to flat bottom having a constant water depth. Water is considered as inviscid, incompressible and irrotational. The solution satisfies the continuity equation, bottom boundary condition and non-linear kinematic free surface boundary condition exactly. Error for dynamic condition is quite small. The solution is suitable in description of breaking waves. The solution is presented with closed form and dispersion relation is also presented with closed form. In the last century, there have been two main approaches to the nonlinear problems. One of these is perturbation method. Stokes wave and Cnoidal wave are based on the method. The other is numerical method. Dean's stream function theory is based on the method. In this paper, power series method was considered. The power series method can be applied to certain nonlinear differential equations (initial value problems). The series coefficients are specified by a nonlinear recurrence inherited from the differential equation. Because the non-linear wave problem is a boundary value problem, the power series method cannot be applied to the problem in general. But finite number of coefficients is necessary to describe the wave profile, truncated power series is enough. Therefore the power series method can be applied to the problem. In this case, the series coefficients are specified by a set of equations instead of recurrence. By using the set of equations, the nonlinear wave problem has been solved in this paper.

CONSTANT-SIGN SOLUTIONS OF p-LAPLACIAN TYPE OPERATORS ON TIME SCALES VIA VARIATIONAL METHODS

  • Zhang, Li;Ge, Weigao
    • 대한수학회보
    • /
    • 제49권6호
    • /
    • pp.1131-1145
    • /
    • 2012
  • The purpose of this paper is to use an appropriate variational framework to discuss the boundary value problem with p-Laplacian type operators $$\{({\alpha}(t,x^{\Delta}(t)))^{\Delta}-a(t){\phi}_p(x^{\sigma}(t))+f({\sigma}(t),x^{\sigma}(t))=0,\;{\Delta}-a.e.\;t{\in}I\\x^{\sigma}(0)=0,\\{\beta}_1x^{\sigma}(1)+{\beta}_2x^{\Delta}({\sigma}(1))=0,$$ where ${\beta}_1$, ${\beta}_2$ > 0, $I=[0,1]^{k^2}$, ${\alpha}({\cdot},x({\cdot}))$ is an operator of $p$-Laplacian type, $\mathbb{T}$ is a time scale. Some sufficient conditions for the existence of constant-sign solutions are obtained.