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Abstract 

 

In order to provide simple and accurate wave theory in design of offshore structure, an analytical approximation is 

introduced in this paper. The solution is limited to flat bottom having a constant water depth. Water is considered as 

inviscid, incompressible and irrotational. The solution satisfies the continuity equation, bottom boundary condition and 

non-linear kinematic free surface boundary condition exactly. Error for dynamic condition is quite small. The solution 

is suitable in description of breaking waves. The solution is presented with closed form and dispersion relation is also 

presented with closed form. 

In the last century, there have been two main approaches to the nonlinear problems. One of these is perturbation 

method. Stokes wave and Cnoidal wave are based on the method. The other is numerical method. Dean’s stream func-

tion theory is based on the method. In this paper, power series method was considered. The power series method can 

be applied to certain nonlinear differential equations (initial value problems). The series coefficients are specified by a 

nonlinear recurrence inherited from the differential equation. Because the non-linear wave problem is a boundary value 

problem, the power series method cannot be applied to the problem in general. But finite number of coefficients is 

necessary to describe the wave profile, truncated power series is enough. Therefore the power series method can be 

applied to the problem. In this case, the series coefficients are specified by a set of equations instead of recurrence. By 

using the set of equations, the nonlinear wave problem has been solved in this paper. 

   

Keywords: Nonlinear progressive water waves, Breaking waves, Breaking limit, Non-linear free surface boundary condition, 

The Stokes criterion, The power series method, The Fourier series method, Variational method.  

 

 

1. Introduction 

Structure design is to determine structural configuration, material and dimension to satisfy structural integrity. 

Hence those are the final output of the structural design. In order to verify structural integrity, structural analysis 

is definitely necessary. But the final output is used as input data to structural analysis. The output of structural 

analysis such as stress, strain and displacement etc. is merely reference data in structural design. Because of the 

reasons, structural design is basically a non-linear process. There are two basic methods to overcome the non-

linearity. One of these uses conservative scheme in which design loads considered are greater than actual loads 

and structural strength and stiffness considered are less than actual strength and stiffness. Therefore integrity of 

actual structure can be guaranteed when we use the scheme in structure analysis and the result satisfies structural 
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integrity requirements. One reason for using this scheme is the simplicity in structure analysis and easy determi-

nation of the final output. The complexity of actual structure and loads acting on the structure can be simplified 

and idealized with conservative scheme. The other is to use analytical solutions instead of numerical solution. 

Structural designers prefer analytical solution rather than numerical solution because it is possible to determine 

the final output without stress, displacement and strain when analytical solutions are available in structural de-

sign.  

The most governing design load is wave force in offshore structure. Numerous water wave theories have been 

developed which are applicable to different environments dependent upon the specific environmental parameters, 

e.g., water depth, wave height and wave period. Airy wave theory, Stokes wave theory, Cnoidal wave theory, 

Dean’s numerical stream function are commonly used in description of water wave (Chakrabarti, 1987). These 

wave theories are limited to a flat bottom having a constant uniform water depth and assume that the waves are 

periodic and uniform. Additionally, water is assumed incompressible and irrotational. In spite of these assump-

tions, the complete solution has not been solved. Airy wave theory and Stokes wave theory satisfy the continuity 

equation and the bottom boundary condition exactly. Cnoidal wave theory satisfies the bottom boundary condi-

tion only. However, the nonlinear boundary conditions at the free surface are not satisfied by any of these theo-

ries except for the kinematic condition met by the Dean’s stream function theory. Hence the stream function 

theory has a broader range of validity than the other theory (Chakrabarti, 1987; DNV, 2007). The stream func-

tion theory is a purely numerical method (DNV, 2007). Hence the stream function theory is seldom used in the 

design of offshore structure. Because the worst loads and load combinations are always considered in structure 

analysis, only breaking waves are of interest in structure analysis. Airy wave theory and second order Stokes 

wave theory are not valid in description of breaking waves. But because these theories are good accord with 

conservative scheme due to its simplicity and analytical solution, these theories are used in even broader range 

than their validity range in actual project. Weakness of conservative scheme is to increase structure weight. 

When structure and its environment are further simplified, structure weight is also increased. In some case, final 

design weight may be greater than the weight considered in structure analysis. In this case structure design has 

totally failed. In order to avoid this problem and to provide a wave theory to be good accord with conservative 

scheme, an analytical solution was presented in this paper.  

The linear combination of velocity potential developed in Airy wave theory was considered in this paper. By 

transformation of variables in which variables were normalized with wave length, the non-linear kinematic 

boundary condition was transferred from the partial differential equation to an ordinary differential equation. 

Wave profile was calculated from the ordinary differential equation. Hence the solution satisfies the continuity 

equation, the bottom boundary condition and kinematic free surface boundary condition exactly. 

The dynamic free surface boundary condition also was solved and wave profile was calculated from the dy-

namic condition. The combination coefficients in velocity potential and the dispersion relation are unknown 

parameters, which were determined to minimize deviation of the two wave profiles. In the wave profile obtained 

from the kinematic condition, the combination coefficients are presented with linear terms but in the wave pro-

file obtained from the dynamic condition, the combination coefficients are presented with quadratic terms. Ow-

ing to convergence condition of infinite series, the combination coefficients are very small except the first coeffi-
cient ( ). Hence any products of these two coefficients are very small. If we neglect any products of two 

coefficients , the quadratic terms can be linearized with . 

Hence current solution is an approximation but the error is quite small. Dispersion relation was determined to 

give the same slop of two wave profiles at point B given in Fig. 1. Two wave profiles can be expanded with two 

power series at a point “B” given in Fig. 1. All coefficients of two power series are Fourier series. Using least 

square method to minimize the deviation of two wave profile, we have a set of equations to determine the com-

bination coefficients. In order to verify the result, a wave was calculated and compared with Stokes’ fifth-order 

wave. 

2. Velocity Potential 

Typical wave profile and coordinate system considered in this analysis was given in Fig. 1 in which  is 
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wave height, is wave crest height,  is wave trough depth,  is wave period and  is wave length,  is 

time,  is horizontal coordinate and y is vertical coordinate,  is water depth. Flat bottom is assumed in this 

study.   is wave profile and   is wave elevation at phase  and  with respect to the coordi-

nate system in Fig. 1. The linear (Airy) theory gives symmetric profiles about the still-water line. Hence  

in the linear theory. The nonlinear theories give an asymmetric crest and trough form with crests higher than the 
depth of the trough. Hence  in the nonlinear theories. Point A is wave crest, point B is wave elevation at 

phase  and . And point C is wave trough. Velocity potential to satisfy continuity equation and bottom 

boundary condition can be presented as follows 

 

  
1

cosh sin
N

n
n

B n nf a b
=

=å  (1) 

 

where  are unknown constants and is the required order of Fourier series. In Eq. (1), the reference phase 

 is considered for the wave such that at , the wave profile becomes equal to the wave crest. 

 and  where  is the wave number, defined as  and  is angular 

frequency, defined as .  is wave length and  is wave period and  is the ratio of the circumfer-

ence of a circle to its diameter.  

3. An Analytical Solution to Kinematic Boundary Condition 

Kinematic boundary condition on free surface is presented as follows 
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Substituting Eq. (1) into Eq. (2), we have 
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where non-dimensional wave profile is defined as follows 

 

 ( )γ k η h= +  (4) 

 

Knowing , wave profile can be easily calculated as follows 

 
γ
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h= -  (5) 

 



160  JangRyong Shin  
 Journal of Advanced Research in Ocean Engineering 1(3) (2015) 157-167 

 

Fig. 1. Typical wave profile and coordinate system considered in this analysis and non-dimensional wave profile. 

By using chain rule and Eq. (4), we have  and . Substituting the 

relations into Eq. (3) and then exchanging the first term of the right hand side and the term of left hand side, we 

have  

 

 
{ }
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By integrating Eq. (6) with respect to  and applying the condition , as defined in Fig. 1. Then 

we have 
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where . Hence . 

 

 ( )oD k h η= +  (8) 
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 is determined with the following continuity equation. 
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Eq. (7) is an analytical solution to the kinematic boundary condition. Because Eq. (7) is an implicit function with 
respect to wave profile , wave profile cannot be computed directly. Hence using Newton’s method, wave pro-

file in Eq. (7) can be calculated as follows. 
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The first step solution in the Newton’s method can be calculated with the truncated power series expansion of Eq. 
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(7) which gives a polynomial equation with regards to . Power series of  around D can be 

expressed as follows 
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Where 
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Note that the notation “;” in  is introduced to distinguish independent variable  from parameter 

. The above function was defined in order to express  and  by the same power series 

form as follows 
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where  is the required order of power series. Obviously  is infinite. Because breaking wave steepness is 

0.14 in deep water wave (Chakrabarti, 1987), wave steepness is always less than equal to . Hence we have 

. In addition, . Finite number of  is 

enough to present Eq. (7), which leads truncated power series expansion as shown in Eq. (15) and Eq. (17). Us-

ing Eq. (15), we have 
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Where 
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Substituting Eq. (18) into Eq. (7), we have a polynomial equation as follows. 
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Noting that Eq. (19) is a truncated Fourier series, we can know coefficients of each term in Eq. (21) are ex-
pressed as Fourier series with unknown constants  (except ) which will be determined to satisfy dy-

namic boundary condition later. For , Eq. (21) is a quadratic equation with respect to . Then we 

have the first step solution for the Newton’s method as follows 
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The other of two roots in Eq. (21) for  is a trivial solution because non-dimensional wave profile defined 

in Eq. (4) is always positive . Eq. (22) is an accurate approximation for Eq. (7). Therefore when we use 

the first step solution given in Eq. (22), Newton’s method in Eq.(11) will be converged rapidly. The root in-

cludes height ranging up to near breaking. When wave height reaches the limitation, the particle velocity at the 

crest of the wave reaches the celerity which is Stokes’ breaking-wave criterion (Chakrabarti, 1987). Eq. (7) satis-

fies the Stokes’ criterion.  

5. An Approximation to Dynamic Boundary Condition 

Dynamic boundary condition on free surface is presented as follows 
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where  is acceleration due to gravity and  is the Bernoulli’s constant which can be determined with the 

condition  at phase . Substituting Eq. (1) into Eq. (23), and then multiplying wave number to 

the result, non-dimensional form of wave profile can be calculated. If we neglect any products of two coeffi-
cients , then Eq. (23) can be presented as follows.  
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Where 
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By using the power series of  given in Eq. (17), Eq. (24) can be rewritten as follows 
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5. The Dispersion Relation 

Slope of two wave profiles is matched at phase . By using the method and neglecting any products of 

two coefficients  in order to avoid coupling to combination coefficients, dispersion relation 

can be determined as follows.  
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Note that the dispersion relation in linear theory is  and . We have wave height limitation 

 because of .  

6. Combination Coefficient 

Eq. (26) is good accord with Eq. (21) when ,  and . Hence the method con-

sidered in this chapter is applied when . Because Eq. (26) is approximation, Eq. (26) is not equal to Eq. 

(21). Hence variational approach (least square method) is suitable to determine combination coefficients(Dym, 
1973), . The deviation of two terms in the same order of Eq. (21) and Eq. (26) is defined as follows 
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If we neglect any products of two coefficients , then we have 
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Where  
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Substituting Eq. (35) into Eq. (32)-(34), Eq. (32)-(34) can be rewritten as follows  

Where 
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Where .  are truncated Fourier series and  are Fourier series co-

efficients in which commas was introduced to distinguish clearly ‘m’ and ‘n’ when they are written with Arabian 
number like . For  and , Fourier series coefficients  were shown in APPENDIX. 

Using least square method to minimize the deviation of two wave profile, we have a set of equations to deter-

mine the combination coefficients as follows. 
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Differentiating Eq. (38), we have 
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Substituting Eq. (38) and Eq. (45) into Eq. (44), we have a set of equations as follows 
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Where  is N-1 by N-1 matrix and  and  are N-1 dimensional column vectors. Using the or-

thogonality of cosine function, the matrix and the column vector can be easily calculated. Substituting Eq. (39) 

into Eq. (47) and Eq. (48), and using the orthogonality of cosine function we have 
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7. Wave Height Condition  

The remained condition is wave height condition given as follows 

 

 max minS g g= -  (51) 

 
 is determined with the above equation where  and .  

 

9. Results and Conclusion  

Analytical solution of Eq. (10) and Eq. (51) were not found in this study. Instead of analytical solution, numeri-

cal method was considered to solve Eq. (10). Given wave profile, Eq. (10) can be easily solved with well-known 

numerical method. Wave height also can be easily calculated from Eq. (51). In addition, all variables are normal-
ized with wave length to be determined from the dispersion relation. The dispersion relation is a function of  

and . Because of the above reasons, the solution is obtained in an iterative way with initial estimation of  

and . Because  and , we can easily determine  and .  is the wave number 

for linear wave and  is wave breaking limit which is less than . Because the Newton’s method 

diverges at breaking limit, we can easily know . In order to verify the result, a wave near breaking limitation 

was calculated and compared with Stokes’ 5th order wave. The result was shown in Fig. 2. Error was calculated 

with the method proposed by Dean( Chakrabarti, S.K, 1987). Error of this study in kinematic condition is zero 

and error of this study in dynamic condition is 6.7%. Hence total error of this study is 6.7%. But error of Stokes’ 

5th order in kinematic condition is 56.6% and error of Stokes’ 5th order in dynamic condition is 19.4%. Hence 

total error of Stokes’ 5th order is 76%. 
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Fig. 2. Wave profile (water depth:  21.714m, wave height: 16.974m, Period: 10sec, wave length 125m by Eq.(31)) 

 

Appendix. Fourier Series Coefficient For  and N=3,  
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All the other coefficients are zero. 


