• Title/Summary/Keyword: connecting method

Search Result 1,062, Processing Time 0.026 seconds

Fuel Cell End Plates: A review

  • Kim, Ji-Seok;Park, Jeong-Bin;Kim, Yun-Mi;Ahn, Sung-Hoon;Sun, Hee-Young;Kim, Kyung-Hoon;Song, Tae-Won
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.1
    • /
    • pp.39-46
    • /
    • 2008
  • The end plates of fuel cell assemblies are used to fasten the inner stacks, reduce the contact pressure, and provide a seal between Membrane-Electrode Assemblies (MEAs). They therefore require sufficient mechanical strength to withstand the tightening pressure, light weight to obtain high energy densities, and stable chemical/electrochemical properties, as well as provide electrical insulation. The design criteria for end plates can be divided into three parts: the material, connecting method, and shape. In the past, end plates were made from metals such as aluminum, titanium, and stainless steel alloys, but due to corrosion problems, thermal losses, and their excessive weight, alternative materials such as plastics have been considered. Composite materials consisting of combinations of two or more materials have also been proposed for end plates to enhance their mechanical strength. Tie-rods have been traditionally used to connect end plates, but since the number of connecting parts has increased, resulting in assembly difficulties, new types of connectors have been contemplated. Ideas such as adding reinforcement or flat plates, or using bands or boxes to replace tie-rods have been proposed. Typical end plates are rectangular or cylindrical solid plates. To minimize the weight and provide a uniform pressure distribution, new concepts such as ribbed-, bomb-, or bow-shaped plates have been considered. Even though end plates were not an issue in fuel cell system designs in the past, they now provide a great challenge for designers. Changes in the materials, connecting methods, and shapes of an end plate allow us to achieve lighter, stronger end plates, resulting in more efficient fuel cell systems.

Effective Models for Connecting BTL and Project Finance (BTL 사업과 프로젝트 금융의 효과적 결합 방안)

  • Park, Won-Seok
    • Journal of the Economic Geographical Society of Korea
    • /
    • v.11 no.2
    • /
    • pp.233-250
    • /
    • 2008
  • This paper aims to analyze the characteristics of BTL, and to propose the effective models connecting BTL and project finance, through the analysis of current state and case study of BTL. The main results of this study are as follows. Firstly, BTL business have been increasing fast, and most of projects are middle size projects below 100 billion Won. Nextly, key suggestions for improving BTL business model are analyzed, which are, first, risk allocation between public and private interests, second, improvement of method for selecting private investment consortium, and third, alleviation of long-term burden of local finance. Finally, effective models for connecting BTL and project finance, which are, first, model for using asset backed securities, second, model for dividing project corporations into construction corporation and operation corporation, and third, model for risk allocation between public and private interests.

  • PDF

Evaluation Factors for Exterior Space Planning from the Perspective of Each Major (전공별 관점에서 본 외부공간계획의 평가요소)

  • Lee, Lim-Jung
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.26 no.3
    • /
    • pp.11-18
    • /
    • 2024
  • As the complexity and diversity of modern urban development increases, the importance of external space planning in urban development projects is growing. This study analyzes the importance and characteristics of each major to enhance the utility value of external space, which aims to improve the efficiency of external space planning and ultimately improve the quality of life of residents. To this end, we reviewed relevant literature, legal guidelines, checklists, and guidelines, and derived 17 external space indicators through expert surveys and FGIs, and organized them into five major categories: accessibility, connectivity, suitability, stability and locality, and landscape planning through FGIs with experts in architecture, urbanism, and landscape architecture. As a result of the analysis, urban planning and design majors prioritized planning that considers the hierarchy and characteristics of the landscape structure, securing public space through the connection of open spaces and pedestrian paths, and connecting organic and three-dimensional buildings, streets, and parks; architectural planning and design majors prioritized harmony with the surrounding environment, securing public space through the connection of open spaces and pedestrian paths, and connecting organic and three-dimensional buildings, streets, and parks; and landscape (environmental) and landscape majors prioritized harmony with the surrounding environment, connecting with adjacent buildings, streets, parks, and green spaces, and planning with integrated landholdings. This emphasizes that urban development projects should secure publicness and integration through harmonious connections with adjacent buildings, streets, parks, and green spaces. This study developed evaluation indicators for evaluating the external space planning of urban development projects and quantified them through the hierarchical analysis method (AHP), which will be useful for future policy formulation and practical application in the fields of urban planning and design, architectural planning and design, landscape (environment), and landscape architecture.

A Study on Remodeling Method of Library Architecture (도서관건축의 리모델링 수법)

  • Lee, Ji-Young
    • Journal of the Korean Institute of Educational Facilities
    • /
    • v.24 no.1
    • /
    • pp.3-10
    • /
    • 2017
  • This study is to analyze the remodeling method of library in terms of space extension method and urban regeneration by repurposing function in unused facilities through case study. In many case of library extension, horizontal extensions are more frequent than vertical extensions, because there are limits to extend vertically due to high live load estimation by book stacks. Extension schemes was organized by new building extension method in connection with existing buildings, attaching method small scaled mass or linear mass to existing building, connecting method a plurality of existing small buildings, vertical extension method on the top of the structure, underground extension method using special structure. Unused facility remodeling to the library, large scaled buildings can be developed completely to the function of the library through the relocation of the space, while small scaled building needs spatial extension. In the case of spatial extension, existing space that was used for other purposes can be used as a reading room or office, avoiding high live load estimation.

Characteristics and Applicability of CWS(Continuous Wall System)II Method (CWS(Continuous Wall System)II 공법의 특성 및 적용성)

  • Lim, In-sig;Lee, Jeong-bae;Kim, Jae-dong;Lee, Jai-ho;Woo, Sung-woo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.11a
    • /
    • pp.43-47
    • /
    • 2008
  • CWSII method was developed to overcome the problems of frequent occurrence in the application of existing downward construction methods, especially in the case of using slurry wall instead of SCW or CIP as a retaining wall. By the improvements in connecting steel beams with the wall, CWSII method is able to ensure the settlement of a steel beam and the diaphragm effect of a slab while reducing the degree of difficulty and the term of works and the cost of construction. As the desired results, CWS method can be applied as a practical downward construction method regardless of the type of retaining wall. In this paper, besides the concept and features of CWSII method, it can be seen that the method can provide reliable and economical performances by comparing with existing methods.

  • PDF

A New Way of Connecting Method Between Steel Pipe Pile and Concrete Footing (새로운 강관말뚝 머리 보강 공법 개발)

  • 박영호;김낙영;박종면;유성근;김영호
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.413-420
    • /
    • 2002
  • Recent experimental research results of connection method between steel pipe pile and concrete footing are provided based on various experimental observations. It gives a shedding light toward developing better and concrete connection method for steel pipe pile at the field application. In this study, the newly developed method is tested for compressive, pull put and combination load including moment with carefully designed monitoring system. The measured data show that new method have at least equivalent or better load resistant capacities compared with those of specified method in Korea Highway Corporation design code. It is also tried to define and investigate the load transfer mechanism for new method.

  • PDF

Experimental Study on Tensile Strength of Straight-Line Connection Using Sleeve for Indirect Method (간접활선용 압축 슬리브를 이용한 전선 직선접속에 대한 실험적 연구)

  • Kim, Sang-Bong;Kim, Kang-Sik;Oh, Gi-Dae;Song, Won-Keun;Keum, Ui-Yeon
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.7 no.1
    • /
    • pp.85-91
    • /
    • 2021
  • With the social atmosphere of respect for human life and the increasing interest in safety of field workers, research and development is underway in various ways to transform direct live method into indirect live method in the field of distribution. As part of this measure, it was necessary to convert electric pole and complex facilities work from machining power distribution to indirect live operation, and install a straight connecting sleeve that connects cut wires for by-pass method, but it failed to meet the tensile strength standard when constructing a sleeve constructed by direct method. In this paper, the design factors were derived based on the case of overseas similar sleeves and the tensile strength evaluation of each variable was performed, based on the analysis of these test results, the method for securing tensile strength of straight-line access sleeves for indirect running was presented.

Element free formulation for connecting sub-domains modeled by finite elements

  • Pan, Chan-Ping;Tsai, Hsing-Chih
    • Structural Engineering and Mechanics
    • /
    • v.25 no.4
    • /
    • pp.467-480
    • /
    • 2007
  • Two methods were developed for analyzing problems with two adjacent sub-domains modeled by different kinds of elements in finite element method. Each sub-domain can be defined independently without the consideration of equivalent division with common nodes used for the interface. These two methods employ an individual interface to accomplish the compatibility. The MLSA method uses the moving least square approximation which is the basic formulation for Element Free Galerkin Method to formulate the interface. The displacement field assumed by this method does not pass through nodes on the common boundary. Therefore, nodes can be chosen freely for this method. The results show that the MLSA method has better approximation than traditional methods.

Wear Problem Improvement Manufacture Technology of Ignitor Tip Component Using 3D Printing Technology (발전소 점화자 팁 부품의 마모 문제 해결을 위한 3D 프린팅 기술을 이용한 부품 제조기술개발)

  • Lee, Hye-Jin;Yeon, Simo;Son, Yong;Lee, Nak-Kyu
    • Journal of Institute of Convergence Technology
    • /
    • v.6 no.2
    • /
    • pp.35-40
    • /
    • 2016
  • Ignitor tip is a component of burner to start the burning process in power plant. This is used to ignite the coal to a constant operating state by fuel mixed with air and kerosene. This component is composed of three components so that air and kerosene are mixed in the proper ratio and injected uniformly. Because the parts with the designed shape are manufactured in the machining process, they have to be made of three parts. These parts are designed to have various functions in each part. The mixing part mixes the supplied air and kerosene through the six holes and sends it to the injecting part at the proper ratio. The inject part injects mixed fuel, which is led to have a constant rotational direction in the connecting part, to the burner. And the connecting plate that the mixed fuel could rotate and spray is assembled so that the flame can be injected uniformly. But this part causes problems that are worn by vibration and rotation because it is mechanically assembled between the mixing part and the inject part. In this study, 3D printing method is used to integrate a connecting plate and an inject part to solve this wear problem. The 3D printing method could make this integrated part because the process is carried out layer by layer using a metal powder material. The part manufactured by 3D printing process should perform the post process such as support removal and surface treatment. However, while performing the 3D printing process, the material properties of the metal powders are changed by the laser sintering process. This change in material properties makes the post process difficult. In consideration of these variables, we have studied the optimization of manufacturing process using 3D printing method.

A Study for Improved Design Criteria of Composite Pile Joint Location based on Case Analysis (사례 분석을 통한 복합말뚝 이음위치의 설계 기준식 개선 연구)

  • Hwang, Uiseong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.3
    • /
    • pp.21-30
    • /
    • 2019
  • Composite pile, which is composed of the steel pipe pile in which the large horizontal force acts and the PHC pile in which the small horizontal force acts by a special connecting devices, is being commercialized as a base material for civil engineering structures. The core of such a composite pile can be said to be a design criterion for estimating the joint position and stability of the connection device between steel pipe pile and PHC pile. In Korea, there is no precise specification for the location of composite pile joints. In the LH Design Department (Korea Land & Housing Corporation, 2009), "Application of composite pile design and review of design book marking" was made with reference to Road Design Practice Volume 3 (Korea Expressway Corporation, 2001). this is used as a basis of the design of the composite pile. It can not be regarded as a section change of the composite pile, so it has a limitation in application. Therefore, In this study, we propose a design criterion for the location of the section of the composite pile (joint of steel pipe pile and PHC pile) and evaluate the stability and economical efficiency of it by using experimental method and analytical method. Analysis of composite pile design data installed in 79 domestic bridges abutment showed that the stresses, bending moments, and displacements acting on the pile body and connection of the pile were analyzed. Through the redesign process, it was confirmed that the stresses generated in the connecting device occur within the allowable stress values of the connecting device and the PHC pile. In conclusion, the design proposal of composite pile joint location through empirical case study in this study is an improved design method considering both stability and economical efficiency in designing composite pile.