Browse > Article
http://dx.doi.org/10.12989/sem.2007.25.4.467

Element free formulation for connecting sub-domains modeled by finite elements  

Pan, Chan-Ping (Department of Construction Engineering, National Taiwan University of Science and Technology)
Tsai, Hsing-Chih (Ecological and Hazard Mitigation Engineering Research Center, National Taiwan University of Science and Technology)
Publication Information
Structural Engineering and Mechanics / v.25, no.4, 2007 , pp. 467-480 More about this Journal
Abstract
Two methods were developed for analyzing problems with two adjacent sub-domains modeled by different kinds of elements in finite element method. Each sub-domain can be defined independently without the consideration of equivalent division with common nodes used for the interface. These two methods employ an individual interface to accomplish the compatibility. The MLSA method uses the moving least square approximation which is the basic formulation for Element Free Galerkin Method to formulate the interface. The displacement field assumed by this method does not pass through nodes on the common boundary. Therefore, nodes can be chosen freely for this method. The results show that the MLSA method has better approximation than traditional methods.
Keywords
compatibility; sub-domain; element free; moving least square; finite element; beam; plane stress;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 Dohrmann, C.R., Key, S.W. and Heinstein, M.W. (2000), 'A method for connecting dissimilar finite element meshes in two dimensions', Int. J. Numer. Meth. Eng., 48(5), 655-678   DOI
2 Ginman, K.M.S. (1997), Topology Optimization for 2-D Continuum Using Element Free Galerkin Method, The University of Texas at Arlington
3 Nayroles, B., Touzot, G. and Villon, P. (1992), 'Generalizing the finite element method diffuse approximation and diffuse element', Computational Mechanics, 10(5), 307-318   DOI
4 McCune, R.W., Armstrong, C.G. and Robison, D.J. (2000), 'Mixed-dimensional coupling in finite element models', Int. J. Numer. Meth. Eng., 49(6), 725-750   DOI
5 Chang, T.Y, Saleeb, A.F. and Shyu, S.C. (1987), 'Finite element solutions of two-dimensional contact problems based on a consistent mixed formulation', Comput. Struct., 27(4), 455-466   DOI   ScienceOn
6 Carey, G.F., Kabaila, A and Utku, M. (1982), 'On penalty methods for interelement constrains', Comput. Meth. Appl. Mech. Eng., 30(2), 151-171   DOI   ScienceOn
7 Belytschko, T., Lu, Y.Y. and Gu, L. (1994), 'Element-free Galerkin methods', Int. J. Numer. Meth. Eng., 37(2), 229-256   DOI   ScienceOn
8 Rixen, D., Farhat, C. and Geradin, M. (1998), 'Two-step, two-field hybrid method for the static and dynamic analysis of substructure problems with conforming and non-conforming interface', Comput. Meth. Appl. Mech. Eng., 154(3-4), 229-264   DOI   ScienceOn
9 Dohrmann, C.R. and Key, S.W. (1999), 'A transition element for uniform strain hexahedral and tetrahedral finite elements', Int. J. Numer. Meth. Eng., 44(12), 1933-1950   DOI
10 Arora, J.S., Chahande, A.I. and Paeng, J.K. (1991), 'Multiplier methods for engineering optimization', Int. J. Numer. Meth. Eng., 32(7), 1485-1525   DOI
11 Quiroz, L. and Beckers, P. (1995), 'Non-conforming mesh gluing in the finite elements method', Int. J. Numer. Meth. Eng., 38(13), 2165-2184   DOI   ScienceOn
12 Aminpour, M.A, Ransom, J.B. and McCleary, S.L. (1995), 'A coupled analysis method for structures with independently modeled finite element subdomains', Int. J. Numer. Meth. Eng., 38(21), 3695-3718   DOI   ScienceOn
13 Lancaster, P. and Salkauskas, K. (1981), 'Surfaces generated by moving least square method', Mathematics of Computation, 37(155), 141-158   DOI
14 Liao, C.L., Reddy, J.N. and Engelstad, S.P. (1998), 'A solid-sell transition element for geometrically non-linear analysis of laminated composite structures', Int. J. Numer. Meth. Eng., 26(8), 1843-1854   DOI   ScienceOn
15 Shim, K.W., Monaghan, D.J. and Armstrong, C.G. (2002), 'Mixed dimensional coupling in finite element stress analysis', Engineering with Computers, 18(3), 241-252   DOI
16 Dohrmann, C.R., Key, S.W. and Heinstein, M.W. (2000), 'Methods for connecting dissimilar three-dimensional finite element meshes', Int. J. Numer. Meth. Eng., 47(5), 1057-1080   DOI
17 Farhat, C. and Geradin, M. (1992), 'Using a reduced number of Lagrange multipliers for assembling parallel incomplete field finite element approximations', Comput. Meth. Appl. Mech. Eng., 97(3), 333-354   DOI   ScienceOn
18 Gordon, W.J. and Wixson, J.A. (1978), 'Shapard's method of metric interpolation to bivariate and multivariate data', Mathematics of Computation, 32(141), 253-264   DOI
19 Houlsby, G.T., Liu, G. and Augarde, C.E. (2000), 'A tying scheme for imposing displacement constraints in finite element analysis', Communications in Numerical Methods in Engineering, 16(10), 721-732   DOI
20 Tsai, H.C. and Pan, C.P, (2004), 'Element free formulation used for connecting domain boundaries', J. Chinese Ins. Eng., 27(4), 585-596   DOI