• Title/Summary/Keyword: conjugate-gradient method

Search Result 218, Processing Time 0.024 seconds

ON BI-POINTWISE CONTROL OF A WAVE EQUATION AND ALGORITHM

  • Kim, Hong-Chul;Lee, Young-Il
    • Journal of applied mathematics & informatics
    • /
    • v.7 no.3
    • /
    • pp.739-763
    • /
    • 2000
  • We are concerned with mathematical analysis related to the bi-pointwise control for a mixed type of wave equation. In particular, we are interested in the systematic build-up of the bi-pointwise control actuators;one at the boundary and the other at the interior point simultaneously. The main purpose is to examine Hilbert Uniqueness Method for the setting of bi-pointwise control actuators and to establish relevant algorithm based on our analysis. After discussing the weak solution for the state equation, we investigate bi-pointwise control mechanism and relevant mathematical analysis based on HUM. We then proceed to set up an algorithm based on the conjugate gradient method to establish bi-pointwise control actuators to halt the system.

Application of the Preconditioned Conjugate Gradient Method to the Generalized Finite Element Method with Global-Local Enrichment Functions (전처리된 켤레구배법의 전체-국부 확장함수를 지닌 일반유한요소해석에의 응용)

  • Choi, Won-Jeong;Kim, Min-Sook;Kim, Dae-Jin;Lee, Young-Hak;Kim, Hee-Cheul
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.4
    • /
    • pp.405-412
    • /
    • 2011
  • This paper introduces the generalized finite element method with global-local enrichment functions using the preconditioned conjugate gradient method. The proposed methodology is able to generate enrichment functions for problems where limited a-priori knowledge on the solution is available and to utilize a preconditioner and initial guess of good quality with only small addition of computational cost. Thus, it is very effective to analyze problems where a complex behavior is locally exhibited. Several numerical experiments are performed to confirm its effectiveness and show that it is computationally more efficient than the analysis utilizing direct solvers such as Gauss elimination method.

Hybrid of SA and CG Methods for Designing the Ka-Band Group-Delay Equalized Filter (Ka-대역 군지연-등화 여파기용 SA 기법과 CG 기법의 하이브리드 설계 기법)

  • Kahng, Sungtek
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.8
    • /
    • pp.775-780
    • /
    • 2004
  • This paper describes the realization of the Ka-band group-delay equalized filter desisted with the help of a new hybrid method of Simulated Annealing(SA) and Conjugate Gradient(CG), to be employed by the multi-channel Input Multiplexer for a satellite use, each channel of which comprises a channel filter and a group-delay equalizer. The SA and CG find circuit parameters of an 8th order elliptic function filter and a 2-pole equalizer, respectively. Measurement results demonstrate that the performances of the designed component meet the specifications, and validate the design methods.

Signal parameter estimation through hierarchical conjugate gradient least squares applied to tensor decomposition

  • Liu, Long;Wang, Ling;Xie, Jian;Wang, Yuexian;Zhang, Zhaolin
    • ETRI Journal
    • /
    • v.42 no.6
    • /
    • pp.922-931
    • /
    • 2020
  • A hierarchical iterative algorithm for the canonical polyadic decomposition (CPD) of tensors is proposed by improving the traditional conjugate gradient least squares (CGLS) method. Methods based on algebraic operations are investigated with the objective of estimating the direction of arrival (DoA) and polarization parameters of signals impinging on an array with electromagnetic (EM) vector-sensors. The proposed algorithm adopts a hierarchical iterative strategy, which enables the algorithm to obtain a fast recovery for the highly collinear factor matrix. Moreover, considering the same accuracy threshold, the proposed algorithm can achieve faster convergence compared with the alternating least squares (ALS) algorithm wherein the highly collinear factor matrix is absent. The results reveal that the proposed algorithm can achieve better performance under the condition of fewer snapshots, compared with the ALS-based algorithm and the algorithm based on generalized eigenvalue decomposition (GEVD). Furthermore, with regard to an array with a small number of sensors, the observed advantage in estimating the DoA and polarization parameters of the signal is notable.

Air-Launched Weapon Engagement Zone Development Utilizing SCG (Scaled Conjugate Gradient) Algorithm

  • Hansang JO;Rho Shin MYONG
    • Korean Journal of Artificial Intelligence
    • /
    • v.12 no.2
    • /
    • pp.17-23
    • /
    • 2024
  • Various methods have been developed to predict the flight path of an air-launched weapon to intercept a fast-moving target in the air. However, it is also getting more challenging to predict the optimal firing zone and provide it to a pilot in real-time during engagements for advanced weapons having new complicated guidance and thrust control. In this study, a method is proposed to develop an optimized weapon engagement zone by the SCG (Scaled Conjugate Gradient) algorithm to achieve both accurate and fast estimates and provide an optimized launch display to a pilot during combat engagement. SCG algorithm is fully automated, includes no critical user-dependent parameters, and avoids an exhaustive search used repeatedly to determine the appropriate stage and size of machine learning. Compared with real data, this study showed that the development of a machine learning-based weapon aiming algorithm can provide proper output for optimum weapon launch zones that can be used for operational fighters. This study also established a process to develop one of the critical aircraft-weapon integration software, which can be commonly used for aircraft integration of air-launched weapons.

Time Delay Estimation Using De-Convolution (디콘볼루션을 이용한 시간지연추정)

  • Koh, Jinhwan;Lee, Heunggwan;Han, Seok Bung;Jeon, Jeong-hwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.12
    • /
    • pp.1692-1699
    • /
    • 2016
  • This paper deals with the problem of time delay estimation using de-convolution. Two approaches, conjugate gradient method and the total lease square method have been presented to solve the de-convolution problem. Numerical simulation demonstrates the superior performance of the proposed methods over the conventional GCC based algorithms and FIR filter method.

Numerical Analysis of Shallow Water Equation with Fully Implicit Method (음해법을 이용한 천수방정식의 수치해석)

  • Kang, Ju Whan;Park, Sang Hyun;Lee, Kil Seong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.3
    • /
    • pp.119-127
    • /
    • 1993
  • Recently, ADI scheme has been a most common tool for solving shallow water equation numerically. But ADI models of tidal flow is likely to cause so called ADI effect in such a region of the Yellow Sea which shows complex topography and has submarine canyons especially. To overcome this, a finite difference algorithm is developed which adopts fully implicit method and preconditioned conjugate gradient squared method. Applying the algorithm including simulation of intertidal zone to Sae-Man-Keum. velocity fields and flooding/drying phenomena are simulated well in spite of complex topography.

  • PDF

Optimizations of Multi-hop Cooperative Molecular Communication in Cylindrical Anomalous-Diffusive Channel

  • Xuancheng Jin;Zhen Cheng;Zhian Ye;Weihua Gong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.4
    • /
    • pp.1075-1089
    • /
    • 2024
  • In this paper, the optimizations of multi-hop cooperative molecular communication (CMC) system in cylindrical anomalous-diffusive channel in three-dimensional enviroment are investigated. First, we derive the performance of bit error probability (BEP) of CMC system under decode-and-forward relay strategy. Then for achieving minimum average BEP, the optimization variables are detection thresholds at cooperative nodes and destination node, and the corresponding optimization problem is formulated. Furthermore, we use conjugate gradient (CG) algorithm to solve this optimization problem to search optimal detection thresholds. The numerical results show the optimal detection thresholds can be obtained by CG algorithm, which has good convergence behaviors with fewer iterations to achieve minimized average BEP compared with gradient decent algorithm and Bisection method which are used in molecular communication.

A Parallel Algorithm for Large DOF Structural Analysis Problems (대규모 자유도 문제의 구조해석을 위한 병렬 알고리즘)

  • Kim, Min-Seok;Lee, Jee-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.5
    • /
    • pp.475-482
    • /
    • 2010
  • In this paper, an efficient two-level parallel domain decomposition algorithm is suggested to solve large-DOF structural problems. Each subdomain is composed of the coarse problem and local problem. In the coarse problem, displacements at coarse nodes are computed by the iterative method that does not need to assemble a stiffness matrix for the whole coarse problem. Then displacements at local nodes are computed by Multi-Frontal Sparse Solver. A parallel version of PCG(Preconditioned Conjugate Gradient Method) is developed to solve the coarse problem iteratively, which minimizes the data communication amount between processors to increase the possible problem DOF size while maintaining the computational efficiency. The test results show that the suggested algorithm provides scalability on computing performance and an efficient approach to solve large-DOF structural problems.

A Study on the Estimation of One-dimensional Beat Fluxes on the Slab in Reheating Furnace by Using Inverse Analysis (역해석을 이용한 가열로 내 소재의 1차원 열유속 추정에 관한 연구)

  • Kang, Deok-Hong;Kwag, Dong-Seong;Kim, Woo-Seung;Lee, Yong-Kuk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.1
    • /
    • pp.61-68
    • /
    • 2003
  • This study deals with the use of the conjugate gradient method for the simultaneous estimation of two unknown boundary heat fluxes on the slab in reheating furnace. Temperature measurements by the experiment are used in the inverse analysis. The heat flux estimations for three different cases of measurement locations in the slab are performed: non-skid, skid, and shift-skid zones. The estimated heat fluxes for three cases indicated the three regions having local peak values of heat fluxes. The estimated temperatures at measurement locations were in good agreements with the measured temperatures within 5% relative error.