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1 |  INTRODUCTION

Over the past few decades, signal parameter estimation 
has been widely applied to various fields, such as sonar, 
radar, seismic exploration, wireless communications, and 
so on. Moreover, signal parameter estimation is an ex-
tensively investigated subject in the field of array signal 
processing. According to previous practical and academic 
studies, there are two types of signal parameters that are 
of great significance and should not be overlooked. The 
first type refers to all spatial parameters, such as the di-
rection of arrival (DoA), while the second type consists 

of all polarization parameters, such as the auxiliary angle 
and polarization phase difference. To achieve better per-
formance in estimating these signal parameters, many pa-
rameter estimation algorithms have been proposed thus far. 
For example, algorithms based on the vector-arr.ay, which 
mainly adopt eigenspace-based techniques, have a long his-
tory. Most of these methods, such as multiple signal clas-
sification (MUSIC) [1], estimation of signal parameters 
using rotational invariance techniques (ESPRIT) [2], and 
their derivatives [3,4], share a common feature whereby 
the estimation process is based on two-dimensional ma-
trix operations. Additionally, researchers have recently 
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developed more advanced algorithms based on the sca-
lar-array, wherein most signal models and measured data 
are based on matrix operations [5‒8]. The dual-frequency 
signal model proposed in [5] is an excellent example of 
such techniques.

Apart from the abovementioned algorithms, the last few 
years have also witnessed the growing popularity of tensor 
operations in the field of signal processing owing to their ad-
vantage of being inherently multidimensional. Previous stud-
ies [9‒11] introduced the technique of array beamforming, 
which is based on the decomposition of multidimensional sig-
nal tensor models. For example, in [11], methods using ten-
sor operations were investigated to improve the robustness of 
array beamforming. Therein, a tensor decomposition method, 
which is mainly used to construct a distortionless response 
model with a minimum variance, was incorporated into the 
improved conjugate gradient least squares (CGLS) method to 
achieve better robustness. Additionally, researchers have also 
devoted considerable attention to the canonical polyadic de-
composition (CPD) of third-order tensors. This subject has 
been widely investigated in the field of mathematics [12‒15], 
and remarkable contributions to the application of signal sep-
aration have also been made [16‒21]. For example, in [20], 
a method of DoA estimation for seismic plane waves was 
considered from a deterministic viewpoint using CPD, and 
the different propagation speed of waves was also consid-
ered using the tensor's multidimensional feature, in addition 
to temporal and spatial information. Likewise, [21] also pro-
posed a CPD-based approach using generalized eigenvalue 
decomposition (GEVD) to achieve time-delay estimation for 
a tensor-based GNSS receiver. From the above review, it fol-
lows that tensor operations have become very popular in the 
field of signal processing.

Notably, recent studies have provided strong evidence for 
the excellent convergence characteristics of the CGLS algo-
rithm and the conjugate gradient (CG) algorithm in signal 
processing [22‒25]. Moreover, we cannot ignore the preva-
lence of least squares (LS) algorithms and stochastic gradient 
(SG) algorithms in the field of parameter estimation [26‒28]. 
To improve the accuracy of parameter estimation, iterative 
algorithms [29‒33] based on hierarchical concepts have also 
been extensively investigated. For example, in [29], a hierar-
chical multi-innovation stochastic gradient estimation algo-
rithm was derived using parameter decomposition.

Based on a comprehensive review of the abovementioned 
literature, the objective of this study was to investigate the 
CPD of a third-order tensor data model by improving the 
CGLS algorithm and then estimating the signal parameters. 
Specifically, we investigated the application of CGLS to 
the tensor CPD, and combined the data model to propose a 
hierarchical CGLS-based algorithm for the CPD (HCGLS-
CPD). Moreover, we analyzed the GEVD-based algorithm 
for CPD (GEVD-CPD) and the CPD algorithm based on the 

alternating least squares (ALS-CPD) for comparison with the 
proposed HCGLS-CPD algorithm. Note that the proposed 
algorithm does not only focus on DoA estimation but also 
on the estimation of the polarization parameters delivered by 
the signal. The strength of our algorithm lies in its excellent 
performance compared with the GEVD-CPD, ALS-CPD, 
and HALS-CPD algorithms when shorter snapshots are pro-
vided and the array has a small number of sensors.

The rest of this paper is organized as follows. The deriva-
tion of the tensor-based data model is presented in Section 
2. The GEVD-CPD and ALS-CPD algorithms are reviewed 
in Section 3. The development of the HCGLS-CPD algo-
rithm and the algebraic operations for extracting the sig-
nal parameters are presented in Section 4. Moreover, the 
numerical simulations are presented in Section 5. Finally, 
the conclusions drawn from this study are presented in the 
final section. The algebraic notations used in the paper are 
presented in Table 1.

2 |  DATA MODEL

Let us consider a vector-array composed of L EM vector-sen-
sors located at hl ∈ℝ

3 for l=1,… , L; the number of the com-
ponent measured by an EM vector-sensor is J. It is assumed that 
R signals with the complex amplitudes of {sr(k), r=1, … , R} 
impinge on the array from the directions 

{
−�r, r=1, … , R

}
,  

where �r =−[ sin�r cos �r sin�r sin �r cos�r]
T , �r ∈ [0, 2�] 

denotes the azimuth angle, and �r ∈ [0,�] denotes the eleva-
tion angle. The spatial steering vector of the signal with DoA 
(�,�) is expressed as follows:

(1)as(�,�)= [e−i2�(hT
1
�∕�),… , e−i2�(bT

L
�∕�)]T .

T A B L E  1  Algebraic notations

υ Scalar υ

v Scalar v

A Matrix A

 Tensor 

ℝ Real number field

ℂ Complex number field

AT Transpose of A

AH Conjugate transpose of A

⊚ Outer product between  and 

A⊗B Kronecker product between A and B

A⊙B Khatri-Rao product between A and B

A◦B Hadamard product between A and B

rA Rank of matrix A

∥A∥
F

Frobenius norm of A

∥v∥
2

2-norm of v
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The polarization steering vector of the signal with the 
spatial-polarization parameter Ψ= (�,�, � , �) is expressed as 
follows:

where � ∈ [0,�∕2] and �∈ [−�,�] denote the polarization 
auxiliary angle and the polarization phase difference, respec-
tively. �∈ℝ

J×6 denotes the polarization selection matrix of the 
EM vector-sensor. Particularly, �= [I3×3, 03×3] represents the 
polarization selection matrix of the three-dipoles, and �= I6×6 
belongs to the complete EM vector-sensor, where I denotes the 
identity matrix. The spatial-polarization steering vector can be 
further expressed as follows:

Therefore, the vector-output of the array at instant tk can 
be modeled as follows:

where n(k), which is an additive and Gaussian complex circular, 
denotes the spatial prewhitening noise.

Considering that the multidimensional nature of the ten-
sor only caters to the multi-domain nature of the signal, the 
following spatial-polarization steering tensor can be obtained 
by performing tensorization on (3), as follows:

Moreover, because the consecutive K snapshots can be 
written as s= [s(1), … , s(K)], the tensor-output of K snap-
shots can be expressed as follows:

where  ∈ℂ
J×L×K and  ∈ℂ

J×L×K represent the tensor 
noise subject to the tensorization regarding the noise matrix 
N= [n(1), … , n(k)].

3 |  GEVD-CPD AND ALS-CPD FOR 
DATA MODEL

Let  =
∑R

r
ar⊚br⊚cr, where ar ∈ℂ

J, br ∈ℂ
L, and cr ∈ℂ

K 
are the scaled representations of ap(Ψr), as(�r,�r), and sr, re-
spectively; that is, ar =a[ap(Ψr)], br =b[as(�r,�r)], cr = c[sr],  
and abc = 1. Therefore, (6) can be expressed as follows:

Moreover, we can also write   as follows:  = [A, B, C]R,  
where A= [a1, … , aR]∈ℂ

J×R, B= [b1, … , bR]∈ℂ
L×R, and 

C= [c1, … , cR]∈ℂ
K×R are the first, second, and third factor 

matrix of  , respectively.
Note that in (7),   is an unknown noise tensor and  is 

the given tensor. Generally, the factor matrices of   are ap-
proximated by the solution of the optimization problem

where ∥ ⋅∥ denotes a suitable norm [14].

3.1 | GEVD-CPD algorithm

Herein, we first reshape   into a matrix T(1) ∈ℂ
JL×K as fol-

lows: the (j, l, k)th entry of   corresponds to the ((j−1)L+ l, k) 
th entry of T(1). Specifically, the rank-1 tensor ar⊚br⊚cr cor-
responds to the rank-1 matrix (ar ⊗br)c

T
r
 [15]. Thus, the ma-

trix unfolding of (6) can be identified with

where aj denotes the ith row of the matrix A, j=1, … , J. 
Similarly, we can reshape ar⊚br⊚cr into matrices (br ⊗cr)a

T
r
 

and (cr ⊗ar)b
T
r
, and obtain the following factorizations:

The core of the GEVD-CPD approach is the following 
straightforward connection between any two slices Tj1

 and 
Tj2

:

where j1, j2 =1, … , J, j1 ≠ j2, and ( ⋅ )† denote the Moore-
Penrose inverse. From (9), we consider the following relationship: 

(2)
ap (Ψ)=�

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−sin� cos�cos�

cos� cos�sin�

0 −sin�

cos�cos� sin�

cos�sin� −cos�

−sin� 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
��,�

�
cos�

sin�e
i�

�

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
h� ,�

(3)a(Ψ)=as(𝜃,𝜙)⊗ap(Ψ).

(4)x(k)=

R∑
r=1

a(Ψr)sr (k)+n(k),

(5)(Ψ)=ap(Ψ)⊚as(𝜃,𝜙).

(6)
 =

R∑
r=1

A(Ψr)⊚sr +

=

R∑
r=1

ap(Ψr)⊚as(𝜃r,𝜙r)⊚sr +

,

(7) = + .

(8)min∥− [A, B, C]R ∥ ,

(9)T(1) =

⎡⎢⎢⎢⎣

T1

⋮

TJ

⎤⎥⎥⎥⎦
=

⎡⎢⎢⎢⎣

BDiag(a1)CT

⋮

BDiag(aJ)CT

⎤⎥⎥⎥⎦
= (A⊙B)CT ,

(10)T(2) = (B⊙C)AT , T(3) = (C⊙A)BT .

(11)Tj1
T
†

j2
=BDiag(aj1 )Diag(aj2 )−1B†,

(12)TT
j1

(TT
j2

)† =CDiag(aj1 )Diag(aj2 )−1C†,
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Tj =BDiag(aj)CT. Hence, for any j, Diag(aj)=B†Tj(C
T )†. The 

CPD features are as follows:

1. The factor matrices B and C follow the GEVD of the 
matrix pencils (Tj1

, Tj2
) and (TT

j1
, TT

j2
).

2. The rows of the factor matrix A can be recovered using the 
following relationship:Diag(aj)=B†Tj(C

T )†.

Notably, the premise of the GEVD-CPD algorithm is that 
the factor matrices A, B, and C are full column rank. In par-
ticular, the known tensor  is used as an approximation of   
because   is unknown.

3.2 | ALS-CPD algorithm

The optimization problem (8) can be solved by minimizing 
the Frobenius norm of the error given with the following 
form:

Considering the manner in which the factor matrix C is 
updated, the simplest method is to rewrite the objective func-
tion in quadratic form, as follows:

where X(1) is the matrix unfolding of tensor . Thus, the factor 
matrix C can be updated in closed form, as follows:

Similarly, the updated methods of the factor matrices A 
and B can be derived. To obtain the optimal solution of the 
problem (13), it is necessary to update the matrices A, B, and 
C through multiple iterations, as described by Algorithm 1. 
The iteration is terminated when ∥ e∥F ≤�, where � denotes 
the threshold defined by the users.

4 |  PROPOSED HIERARCHICAL 
CGLS-CPD ALGORITHM

The traditional CGLS algorithm is the mathematically equiv-
alent form of the CG algorithm, when it is used to solve the 
LS problem min∥d−Mw∥, where d and M represent the 
prior knowledge, and w is the parameter to be solved for. 
This section presents the HCGLS-CPD algorithm for the 
tensor-based data model.

4.1 | HCGLS-CPD algorithm

Considering the matrix unfolding form expressed by (9), the 
optimization problem expressed by (8) can be rewritten as 
follows:

Equivalently, we can solve the problem (16) by optimizing 
the multiple sub-problems, as follows:

where [X(1)]:,k denotes the kth column of the matrix X(1), and ck 
denotes the kth row of the matrix C. In other words, the updated 
matrix C can be approximated as the global optimal solution 
of (16) by hierarchically solving the sub-optimization problem 
(17).

According to (8) and (10), the updated methods of matri-
ces A and B can be obtained by the same token. Because it 
is important that matrices A, B, and C are unknown, hierar-
chical iteration must be carried out to bring the optimization 
result closer to the actual value.

The procedure of the proposed algorithm is summarized 
in Algorithm 2. First, the initializations of the unknown 
factor matrices A, B, and C are required. In this study, the 
initialization of matrices A and B can be achieved by set-
ting any Ψ= (�,�, � , �) in (2) and (3). Any updated column 
of the arbitrary factor matrix can be obtained by the inner 
iteration in steps 6–16. This process is repeated until all col-
umns of the factor matrix are updated. Then, the alternate 
updating of matrices A, B, and C is completed through the 
middle iteration in steps 2–18. Subsequently, it is deter-
mined whether the calculation accuracy described in step 1 
is reached; if not, the updating of the factor matrices is con-
tinued; otherwise, the algorithm is terminated. The thresh-
olds � and � in steps 1 and 6 are set by users strongly relying 
on their own experiences.

The obvious advantage of the proposed algorithm lies in 
its efficiency of handling factor matrices with highly col-
linear column vectors, owing to the adoption of a hierar-
chical optimization strategy. In other words, the proposed 

(13)min∥−

R∑
r

ar⊚br⊚cr ∥F.

(14)min∥XT
(1)
−C(B⊙A)T ∥F ,

(15)C=XT
(1)

(B⊙A)((BTB)◦(ATA))−1.

(16)min∥X(1)− (A⊙B)CT ∥F .

(17)min∥ [X(1)]:,k −Mck ∥2 , k=1, … , K,
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algorithm independently optimizes the column vectors 
of each factor matrix, then iteratively updates each factor 
matrix, and thus effectively avoids the matrix inversion op-
eration, which is an indispensable step for the ALS-CPD 
algorithm. Moreover, the updating of the factor matrix ob-
viously tends to be ill-conditioned owing to the existence of 
matrix inversion operations in Algorithm 2, when any two 
of the three factor matrices have highly collinear column 
vectors.

The derivation process of the ALS-CPD algorithm based on 
hierarchical theory is described in Appendix B. According to its 
iterative steps, it can be seen that its convergence performance 
is poor.

4.2 | Parameter estimation

From the abovementioned data model, it can be seen that the 
spatial-polarization parameters of the signals can be reflected 
by the factor matrix A, and factor matrix B only contains the 

spatial parameters of the signals. Therefore, once the factor 
matrices are obtained, the first step is to extract the spatial 
parameters from B.

4.2.1 | Estimation of spatial parameters

The spatial DoA of the rth signal impinging on the array can 
be estimated by solving the equations as follows:

The DoA (�r,�r) of the rth signal can be estimated from 
any two equations in (18). However, to improve the validity 
of the results, appropriate strategies can be formulated to ob-
tain multiple sets of solutions from (18). Then, the average is 
calculated as the final solution.

4.2.2 | Estimation of polarization  
parameters

Once the DoA is estimated, the polarization parameters of the 
signals can be extracted from the factor matrix A. As men-
tioned above, ar is the scaled representation of ap(Ψr), that is, 
ar =a[ap(Ψr)] and a is a scaling factor. Hence, according to 
(2), the polarization parameters (�r, �r) of the rth signal can 
be obtained as follows:

5 |  SIMULATIONS

This section discusses the numerical simulations conducted 
to demonstrate the efficiency of the proposed algorithm. 
We considered the following scenario using a uniform lin-
ear array (ULA) with complete EM vector-sensors and half 
wavelength spacing. Two signals impinged on the ULA from 
(�1,�1)= (50◦, 90◦) and (�2,�2)= (120◦, 90◦) with the polari-
zation parameters (�1, �1)= (10◦, 90◦) and (�2, �2)= (30◦, 90◦)

, respectively. The noise component was assumed to be the 
zero-mean additive white Gaussian noise.

Throughout all simulations, the results were averaged 
by 200 Monte Carlo trials, and compared with the Cramér-
Rao lower bound (CRB) benchmark, which is described in 
Appendix A. The performances of the GEVD-CPD algo-
rithm, ALS-CPD algorithm, and HALS-CPD algorithm were 
also evaluated for comparison with the results obtained by 
the proposed algorithm. Additionally, the root mean square 
error (RMSE) involved in the simulations was calculated by

(18)
⎧
⎪⎨⎪⎩

[br]1 = e−i2�(hT
1
�r∕�),

⋮

[br]L = e−i2�(hT
L
�r∕�).

(19)ar =a���r ,�r
[ cos �r, sin �re

i�r ]T .
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where �r denotes one of parameters {�r,�r, �r, �r}, and belongs 
to the rth signal; �̂�rn is the estimation of �r in the nth trial.

5.1 | Comparison of computational  
efficiency

The computational efficiency of the proposed algorithm was 
compared with that of three traditional algorithms (GEVD-
CPD, ALS-CPD, and HALS-CPD) by recording the compu-
tational time of CPD under the various situations presented in 
Tables 2 and 3. We implemented the abovementioned algo-
rithms in Matlab 2016a, and conducted an experiment using 
a personal computer with Intel Core i5 CPU6200U 2.3 GHz 
and 8  GB of memory on Windows 10. The ALS-CPD, 
HALS-CPD, and proposed algorithms used the relative error 
e=∥XT

(1)
−C(B⊙A)T ∥F ∕∥XT

(1)
∥F as a stop criterion. The it-

erative processes of ALS-CPD, HALS-CPD, and HCGLS-CPD 
was terminated when the relative errors were lower than 0.5.

The number of sensors L was assumed as 4. In addition to 
the two abovementioned signals, another signal impinging on the 
ULA from (�3,�3)= (30◦, 90◦) with the polarization parameters 
(�3, �3)= (60◦, 90◦) was considered to obtain the data presented 
in Table 3. As can be clearly seen, the proposed HCGLS-CPD 
algorithm achieved the highest computational efficiency in most 
test cases, although in a few cases its performance was occasion-
ally weaker than that of the GEVD-CPD algorithm.

5.2 | Performance of proposed algorithm

It was assumed that the ULA consisted of four complete 
EM vector-sensors, and that SNR was 30 dB. The results 
presented in Figure 1 reveal that the proposed HCGLS-
CPD algorithm had superior performance compared with 
the GEVD-CPD, ALS-CPD, and HALS-CPD algorithms 
when the number of snapshots was less than 250. As the 
number of snapshots increased, the performance of the 
HCGLS-CPD and GEVD-CPD algorithms tended to be 
similar. Additionally, particular attention should be paid to 
the ALS-CPD algorithm because its performance was infe-
rior to that of the other three algorithms in most test cases, 
particularly when the number of snapshots was greater than 
50.

Figure 2 presents the results of the scenarios wherein two 
different sensor numbers (L  =  4,  8) were considered, both 
of which were tested against SNR for the fixed number of 
snapshots of K = 200. As can be clearly seen in Figure 2, 
the HCGLS-CPD algorithm outperformed the other three 
algorithms in each case wherein the SNR was greater than 
25 dB, and had the fastest convergence speed even though its 
performance was not optimal in a few cases. However, as the 
number of sensors increased, the ALS-CPD algorithm gained 
an advantage whereby the accuracy of the DoA estimation 
markedly improved; the other three algorithms only achieved 
slight improvement.

Once the DoA was estimated as described in the above 
example, the polarization parameters could be estimated. 
Figure 3 shows the accuracy of the algorithms for param-
eter � in the same scenarios as Figure 2. As can be seen 
in the figure, the estimation accuracy of parameter � was 
lower than that of DoA for all algorithms, even though 
the performance differences amongst the algorithms were 
similar to the tendencies shown in Figure 2. This loss can 

(20)RMSE(𝜇)=

√√√√ 1

NR

N∑
n=1

R∑
r=1

(�̂�rn−𝜇r)
2,

T A B L E  3  Computational time (s) for different SNR and 
snapshots in case of R = 3

(SNR, K)

30 dB 60 dB

K = 128 K = 512 K = 128 K = 512

GEVD-CPD 0.535 1.338 0.484 1.263

ALS-CPD 1.036 1.182 1.109 1.168

HALS-CPD 13.25 18.92 13.60 19.87

HCGLS-CPD 0.493 0.606 0.487 0.617
F I G U R E  1  DoA RMSE vs K and L = 4 [Colour figure can be 
viewed at wileyonlinelibrary.com]
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GEVD-CPD 

ALS-CPD

HALS-CPD
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T A B L E  2  Computational time (s) for different SNR and 
snapshots in case of R = 2

(SNR, K)

30 dB 60 dB

K = 128 K = 512 K = 128 K = 512

GEVD-CPD 0.487 1.157 0.450 1.163

ALS-CPD 0.632 0.856 0.639 0.778

HALS-CPD 10.26 16.81 11.01 15.63

HCGLS-CPD 0.471 0.557 0.479 0.572

www.wileyonlinelibrary.com
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be explained by the cumulative error because the polar-
ization parameters were obtained on the premise of DoA 
estimation.

6 |  CONCLUSIONS

This paper proposes a hierarchical CGLS algorithm for the 
tensor CPD. The proposed algorithm was used to tackle the 
problem of signal parameter estimation. The procedure of 
the proposed HCGLS-CPD algorithm was described along 
with the algebraic method used to estimate the signal param-
eters. The strength of the proposed HCGLS-CPD algorithm 
lies in the fact that its convergence and accuracy outperform 
state-of-the-art algorithms in the extraction of factor matri-
ces. Moreover, the proposed algorithm can more accurately 

estimate the parameters, particularly when the number of 
snapshots is relatively small.
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F I G U R E  2  DoA RMSE vs SNR for K = 200 and various 
numbers of sensors. (A) L = 4, (B) L = 8 [Colour figure can be viewed 
at wileyonlinelibrary.com]
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F I G U R E  3  Polarization parameter RMSE vs SNR for K = 200 
and various numbers of sensors. (A) L = 4, (B) L = 8 [Colour figure 
can be viewed at wileyonlinelibrary.com]
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APPENDIX A

CRAMÉR-RAO LOWER BOUND FOR 
VECTOR-SENSOR ARRAY
Let us consider the situation described in (4) and establish its 
matrix form as follows:

where A= [a(Ψ1)… a(ΨR)]∈ℂ
LJ×R and s(k)= [s1(k)… sR(k)]T ∈ℂ

R×1.  
The vector of unknown parameters is expressed as follows:

where Ψr represents the unknown parameters vector of the rth 
source, r∈ [1,… ,R]. It is assumed that matrix A in (A1) is a 
column full rank matrix, and the Jacobian �A∕�� is also full 
rank. Furthermore, we set

where qr denotes the number of elements in vector Ψr. The 
main objective of this study was to investigate the performance 
of estimating � in (A1) from x(1),… x(K).

To simplify the expression of the Cramér-Rao lower 
bound, two intermediate matrices are constructed as follows:

where Rss denotes the covariance of the signal matrix 
S= [S(1)… s(K)], �2 is the noise variance, and I denotes the 
R × R unit matrix. The Cramér-Rao lower bound of the unbi-
ased estimation of � is expressed as follows:

(A1)x(k)=As(k)+n(k),

(A2)�= [Ψ1 …ΨR]T ,

(A3)Ã= [ã
(1)

1
… ã

(1)

q1
… ã

(R)

1
… ã

(R)

qR
],

(A4)ã
(n)

m
=�a(Ψn)∕�Ψn(m),

(A5)U=Rss(A
HARss+�2I)−1AHARss,

(A6)P= I−A(AHA)−1AH ,
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where 1 denotes the q×q matrix with all entries equal to one, 
q=

∑R

r=1
qr. It is assumed that Q<ij> with dimension pi×pj is 

the (i, j)th block entry of matrix Q. The block trace operator 
btr( ⋅ ), block transpose operator bT, block Kronecker product ⊠,  
and block Hadamard product ⊡ are defined as follows:

Definition A.1. Block trace operator

Definition A.2. Block transpose

Definition A.3. Block Kronecker product

Definition A.4. Block Hadamard product

APPENDIX B

HIERARCHICAL ALS-CPD 
ALGORITHM
Here, we first reshape the rank-R tensor optimization problem 
(13) into an R rank-1 tensor optimization problem, as follows:

where r =−
∑R

r�≠r
ar�⊚br�⊚cr� ,r=1, … , R, and 

r� =1, … , r−1, r+1, … , R. Then, the vector ar is further up-
dated as follows:

where the rth entry of vector d is dr = (bT
r
br)((a

T
r
ar)), 

dr� = [d1,… , dr−1, dr+1,… , dR]T. Similarly, the components ar 
and br can be expressed as follows:

where d̃r = (cT
r
cr)((b

T
r
br)) and dr = (aT

r
ar)((c

T
r
cr)). Obviously, 

the algorithm requires more iterations; therefore, the execution 
of the CPD process based on the hierarchical ALS algorithm is 
less efficient.

(A7)CRB(Ψ)=
𝜎2

2K
{Re[btr((1⊠U)⊡(�A

H
P�A)bT )]}−1,

[btr(Q)]ij = tr(Q<ij>).

(QbT )<ij>=Q<ji>.

(Q1⊠Q2)<ij>= [Q1]<ij>⊗ [Q2]<ij>.

(Q1⊡Q2)<ij>= [Q1]<ij>[Q2]<ij>.

(B1)min∥ vec(r)− (br ⊗ar ⊗IK)∥2 ,

(B2)cr =
1

dr

(X(1)(br ⊗ar)−Cr�dr�),

(B3)ar =
1

d̃r

(X(2)(cr ⊗br)−Ar� d̃r�),

(B4)br =
1

dr

(X(3)(ar ⊗cr)−Br�dr�),


