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Abstract 

Various methods have been developed to predict the flight path of an air-launched weapon to intercept a fast-moving target in the 

air. However, it is also getting more challenging to predict the optimal firing zone and provide it to a pilot in real-time during 

engagements for advanced weapons having new complicated guidance and thrust control. In this study, a method is proposed to 

develop an optimized weapon engagement zone by the SCG (Scaled Conjugate Gradient) algorithm to achieve both accurate and 

fast estimates and provide an optimized launch display to a pilot during combat engagement. SCG algorithm is fully automated, 

includes no critical user-dependent parameters, and avoids an exhaustive search used repeatedly to determine the appropriate stage 

and size of machine learning. Compared with real data, this study showed that the development of a machine learning-based 

weapon aiming algorithm can provide proper output for optimum weapon launch zones that can be used for operational fighters. 

This study also established a process to develop one of the critical aircraft-weapon integration software, which can be commonly 

used for aircraft integration of air-launched weapons. 
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1. Introduction12 
 

With the F-16 and F-18, which represent the 4th 

generation fighters, the development of fighter jets 

prioritized their maneuverability; however, current 

technologies are focused on avionics, sensors, and weapons 

integration to improve the mission capabilities of fighter jets. 

The representative standard capability that distinguishes 

general aircraft from fighter jets is combat power, and the 

most important factor in evaluating combat power can be 

represented by the weapons that each fighter can operate. 

Until World War II, the installation of more weapons 
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showed combat capabilities, and recently, how actively 

smart weapons can be used has become a standard for 

evaluating a fighter's combat effectiveness (Jung, 1998). 

This can also be seen through the birth and development 

history of the world's best-selling F-16, which started with 

the YF-16. The F-16, which was created as a light fighter, 

started with short-range air-to-air missions and was 

confirmed to have mid-range air-to-air capabilities, and its 

air-to-ground attack capabilities were also gradually 

expanded. 

Air-launched weapons integration should be considered 

in three categories: physical integration, electrical 
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integration, and logical integration. The first physical 

integration is in the areas of typical structures and 

aerodynamics for carrying and flying with those weapons. 

Therefore, physical integration is the basis of all weapons 

integration and is a representative field of aircraft 

development for weapons operations. The second electrical 

integration has been specified through the U.S. military 

standard MIL-STD-1760E. Air-launched weapons 

developed before this standard was established had no 

standards for interface with aircraft, so each weapon used its 

own interface. To mount weapons on an aircraft, 

modification of the physical interface of the aircraft or 

weapon was required. The interoperability standard 

established to overcome these problems in system 

integration between existing aircraft and weapons and to 

minimize the time and cost required for integration between 

aircraft and weapons is MIL-STD-1760E (Lee, 2018). 

Interoperability between aircraft and weapons has already 

been ensured in the United States and most European 

countries and all new weapons are being developed in 

compliance with these specifications. 

On the other hand, logical integration is representative 

of guided weapons integration technology that is different 

from existing unguided weapons integration. The difference 

between weapons is large, so standardization is difficult, and 

the aircraft system integration schedule is also the longest of 

all weapons integration periods. This field is a technology 

that defines the data flow between aircraft and weapons in 

chronological order to adjust each function of the weapons. 

Logical integration generally refers to software integration 

between aircraft and weapons and is achieved through 

interfaces universalized by the U.S. military standard MIL-

STD-1553B. Through the previously mentioned electrical 

interface MIL-STD-1760E, representative messages 

between the aircraft and weapons for logical integration 

have been defined, but the detailed interface has been 

defined in each Weapon ICD individually in consideration 

of the characteristics of the weapons. 

 

 
Figure 1: Ballistic Trajectory and Impact Point Estimation 

 

For traditional unguided bomb operation, aircraft 

calculate the bomb's accurate free-fall trajectory (ballistic 

trajectory) and provide the pilot with the optimal release 

point based on this (Jo, 2007). However, recently, the 

accuracy of guided weapons has been confirmed as an 

expanded launch zone rather than the estimated bomb 

impact point, and the guidance algorithm of the weapon 

itself and the navigation synchronization (transfer alignment) 

of the aircraft and the weapon before release are getting 

more important. 

There is one more thing to consider weapons integration 

on the aircraft. Technology for predicting the optimal 

weapon launch area for guided weapons and providing 

relevant information to pilots in real-time also falls under 

the category of logical integration, and the applicable 

technologies and fields for this are different from the 

previously mentioned fields. The technologies that have 

been used so far are divided into three types. The first is the 

previously mentioned free fall trajectory prediction, which 

has been mainly used for unguided bombs. Second, in the 

case of guided bombs or missiles, the launch area of the 

weapon is organized in the form of a table (look-up table) 

that is divided by combining the approximate speed, altitude, 

and distance between the target and the aircraft, and is 

executed in real-time on the aircraft. However, this table 

should be simplified for real-time conditions (Ryoo, 2014). 

The third technique that has been used is mainly for high-

mobility missiles that are difficult to predict and whose 

various paths are difficult to standardize. It is a method of 

simulating a guidance algorithm similar to an actual weapon 

in real time on an aircraft. Although the pilot can predict the 

optimal launch time of the weapon, existing methods force 

the algorithms to be simplified to ensure real-time for 

increasingly complex navigation guidance characteristics of 

the weapons, which inevitably tends to reduce the accuracy 

of the predicted trajectory (Yoon, 2010). 

In this paper, we use machine learning technology used 

in artificial intelligence to develop an algorithm that can 

satisfy both accuracy and real-time (Warwick, 2016) and 

will be quickly integrated into aircraft when developing 

many newly developed air-launched weapons in the future. 

We also would like to present a method to formalize the 

weapon launch zone algorithm integration process. 

 

 

2. Development of Machine Learning-based 

Weapon Aiming Algorithm 
 

2.1 Data Generation for Machine Learning 

 

Due to the increasingly complex nature of the combat 

system, existing repetitive calculations have limitations in 
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securing the real-time performance of the mission computer 

in battlefield situations. Due to the nature of embedded 

software, resources are limited, but the number of 

calculations continues to increase, causing problems in 

which calculations cannot be completed within a limited 

period, or the time that should be allocated to other 

calculations cannot be sufficiently allocated. To solve this 

problem, the number of cases of embedded software 

development that secures real-time performance by using 

pre-learned results is increasing. In the case of US fighter 

aircraft, the F-16, and F-15, the efficiency of the 

development of highly complex weapon targeting 

algorithms previously developed by each aircraft 

manufacturer has recently been improved through 

specialized companies. FACC company learned each 

situation in advance using data and simulation models 

acquired from weapons development companies and built a 

ZAP (Zone Acquisition Program) solution that can quickly 

predict the optimal firing area in actual battlefield situations. 

Compared to the existing method that reflects the 

characteristics of the weapon through specific coefficients, 

it boasts prediction accuracy and fast calculation speed and 

is installed in the mission computer operation software (OFP) 

of the latest US military fighter jets such as the F/A-18, F-

35, and F-22. It is used as a standard for air-launched 

weapons cueing algorithms. In this way, the development of 

a weapon-aiming algorithm through machine learning has 

the advantage of providing a faster and more accurate 

solution than existing methods. However, for this to happen, 

it is important to secure actual weapon data (TDS: Truth 

Data Set) that can be used as learning and verification 

targets. In general, TDS is a process of creating and 

formalizing the footprint of a weapon under each condition 

using a six-degree-of-freedom model of the weapon.  

In this study, the fly-out model of a virtual air-to-ground 

bomb was used to compare how well the footprint and 

launchable area of the weapon generated through learned 

data matched the fly-out model used for creation. For 

machine learning, it is necessary to secure sufficient data 

based on many inputs, such as the conditions of the 

launching aircraft and the location of the target, as well as 

the target impact parameters of the weapon. However, since 

it is practically impossible to secure relevant valid data 

through the actual launch of the weapon, the 6-degree-of-

freedom model used in M&S (Modeling and Simulation) 

must be used, or a corresponding model (Truth Model) must 

be used. However, these models are tools that can directly 

evaluate the performance of weapons, are strictly controlled 

to protect their technology, and are generally not provided 

to other countries. Therefore, the development of a weapon-

targeting algorithm through machine learning can be used as 

the most efficient method when integrating domestically 

developed air-launched weapons into domestic fighter jets. 

2.2. Setting Valid Conditions for Data Generation 

 
To build a weapon footprint database, three values must 

be set. First, the input values of the aircraft are the altitude, 

speed, and descent angle of the aircraft at the time of launch. 

Aircraft conditions must be set to applicable categories for 

each aircraft and each armament combination. Second, the 

target's position value can be defined as a relative position 

based on the aircraft or can be created based on absolute 

coordinates (latitude, longitude). The third is the collision 

conditions that must be achieved when the weapon reaches 

the target, including impact angle, impact azimuth, and 

impact velocity. This third condition can only be considered 

with the latest guided weapons. In the case of existing 

general-purpose bombs, they were launched only by 

checking how far the bomb could fly. However, the latest 

guided armament aims to maximize the destruction of the 

target (In-Zone) in addition to the maximum distance the 

armament can reach (In-Range) based on current aircraft 

conditions. To improve the mission success rate, pilots tend 

to use the In Zone as the optimal launch area. Accordingly, 

the machine learning-based weapon aiming algorithm must 

provide the pilot with two possible weapon launch areas. 

 
Table 1: Weapon Delivery Conditions  

Category Parameters Test range 

Delivery 

condition 

Altitude 2,000~50,000ft 

Velocity 160KCAS ~ M0.9 

Impact 

condition 

Angle 15~90deg 

Azimuth -135~135deg 

 

Table 1 shows the conditions to create data for learning in 

this study. Altitude and speed were generally based on 

2,000~50,000ft, 160KCAS to M1.3, at which an aircraft can 

launch a guided bomb, and the release angle of the aircraft 

was within 5 degrees of horizontal flight to limit the range 

of data to be studied. This has the advantage of improving 

accuracy only in the case of general delivery conditions but 

has the limitation that the launch area of the armament 

cannot be presented if it is outside the applicable range. 

Therefore, when extracting algorithm learning target data, it 

is important to generate a data set by considering these 

strengths, weaknesses, and characteristics of weapons. 

Additionally, in cases where the weapon launch area 

cannot be displayed to the pilot due to data limitations, the 

role of the algorithm is to inform the pilot of the reason and 

guide the pilot so that he can fly within stable weapon 

release conditions. Similarly, the selection of target impact 

conditions is also important. As mentioned earlier, the latest 

guided weapons can improve their target probability kill rate 
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(Pk) and mission success rate (Ps) by setting the conditions 

for when the weapon reaches the target. For example, to 

destroy a target surrounded by a solid concrete wall, the 

armament must fall perpendicularly to the target and fly 

along a flight path to maximize the impact speed; however, 

which conditions limit the launchable distance of the 

armament. In addition, when it is necessary to attack the rear 

of a target like North Korea's long-range artillery, the glide 

length of the weapon must be longer, but the weapon must 

be capable of setting a flight path that can strike from the 

rear. Therefore, in the armament targeting algorithm, it is 

necessary to set learning data for the impact conditions 

between the armament and the target according to the 

characteristics of the armament. 

In this study, the scope was limited to the level of general 

GPS/inertial guided bombs. This was limited to an impact 

angle of 15 to 90 degrees and a collision azimuth angle of -

135 to 135 degrees. The reason for limiting the impact angle 

to 15 degrees as the minimum angle is because, unlike a 

missile, in the case of a regular bomb, when it collides with 

a target at a low impact angle, it has the effect of slipping 

instead of exploding and causing a misfire. The reason for 

limiting the azimuth angle is that in the case of regular 

bombs without thrust, the armament capable of attacking the 

target from behind is limited. Additionally, collision speed 

was not considered in this study because the warhead used 

in this study was targeted at the 500-pound bomb class, 

which is the easiest to obtain in Korea. In the future, impact 

speed is a factor that must be considered when creating 

algorithms for penetrating bombs such as BLU-109. 

 

 

3. Algorithm Generation  
 

3.1. Prediction Using SCG algorithm 
 

The algorithm creation software consists of a total of four 

parts: the algorithm creation user interface, the algorithm 

creation main function, the footprint validity learning 

function, and the footprint learning function. The user 

interface was configured as shown in the left picture of 

Figure 2, and neural network learning provided by MATLAB 

was selected and applied. The artificial intelligence 

algorithm to be learned, number of repetitions, time limit, 

and data sampling are received through user input, and 

learning can be performed as a whole or individually. 

Using the Gaussian process technique has the advantage 

of using a small amount of data and being able to check the 

accuracy of the data through the algorithm itself. However, 

taking real-time into account and considering that it is a 

domestically developed weapon, it is possible to secure a 

large amount of data, in the study, machine learning using the 

neural network algorithm was used. As shown in the right 

window of Fig. 2, when learning is performed, the Neural 

Network Toolbox is executed and learning progresses. The 

detailed algorithm used is a Scaled Conjugate Gradient (SCG) 

among the supervised learning provided by MATLAB. SCG 

consists of the Conjugate Gradient algorithm with Line 

search (CGL) and Broyden-Fletche-Goldfarb-Shanno 

(BFGS) and is famous for fast convergence speed which can 

avoid exhaustive line searches used repeatedly to determine 

the appropriate stage and size of machine learning [Meller, 

1990]. SCG algorithm is also fully automated, includes no 

critical user-dependent parameters, and avoids a time-

consuming line search. This phenomenon is beneficial for 

applying this process to any other weapon systems. 

 

 
  

Figure 2: Algorithm Generation 
 

 

3.2. Algorithm Optimization For No-overfitting  
 

The problem that must be considered first in data learning 

through machine learning methods is overfitting. Overfitting 

is a problem in which a model shows a certain level of 

prediction accuracy within the training data, but its accuracy 

drops significantly when new data is applied. Since this study 

needs to predict the weapons delivery area during actual 

combat, a decrease in accuracy due to overfitting can be very 

fatal. Overfitting occurs in two main cases. The first is when 

the variables are too complex, and the second usually occurs 

when the dataset used for learning and the dataset that 

verifies the learned results overlap. In this study, to prevent 

overfitting in the first case, data generation was optimized 

with aircraft release conditions and target impact conditions 

that can actually occur and be practically used for real 

weapons drop, as shown in Table 1. Additionally, to avoid 

overfitting during the data learning and verification process, 

only a portion of the total dataset was used for learning, and 

the remaining non-redundant dataset was used to evaluate the 

learning results. If you evaluate the learning results with the 

test dataset used for learning, you can quickly identify and 

modify model performance, and accuracy can be easily 
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improved just by increasing the number of executions. 

However, the same tendency doesn’t occur even when using 

separately classified data, this is evidence that the learned 

results are overfitted.  

Even when the training dataset and the evaluation data set 

are separated, the prediction rate must be compared to 

determine when to stop learning as the number of learning 

iterations and the number of hidden layers increases. If the 

prediction rate of the training data increases as the number of 

hidden layers increases, but there is a point where the 

prediction rate of the test set begins to decrease, this should 

be judged as overfitting. In other words, while removing 

under-fitting parts of the machine learning model, learning 

must be stopped just before over-fitting occurs. In this study, 

the model was optimized through iterative learning and 

judgment of overfitting as shown below. 

 

 

 
 

Figure 3: Training Model Optimization 

 

Fig. 3 is the actual use of the data set created in this paper. 

First, a database using the M&S model of armament was 

constructed for each aircraft release condition and armament 

impact condition for In-Range and In-Zone. Only 70% of the 

total data was used for learning, and the remaining 30% was 

used for evaluation of the learned model, and optimization 

was performed to determine whether the entire model was 

overfitted. 

 

 

4. Algorithm Development and Verification  
 

4.1. Conservative Extraction of Learned Data  

 

Contrary to overfitting, a conservative approach to the 

results extracted through learned data is a factor to consider 

in aircraft integration. The learned data contains error 

elements, and in particular, the accuracy of determining the 

true value tends to be relatively low when predicting the 

weapon release area of the learned edge. Therefore, to utilize 

the relevant data as an actual weapons release area and 

present it to pilots in flight as a standard for judging launch 

timing, the learned data must be approached conservatively. 

Additionally, the data needs to be simplified to take into 

account limited mission computer resources and real-time. 

Taking this into consideration, the weapon release area 

provided to the aircraft is generally represented as a limited 

number of polygons, and this area is more conservative than 

the data generated by actual learning, so the pilot be 

confident that he/she would get the results you want dropping 

weapons within this area.  

 

  
Figure 4: Display Data Conservatism 

 

In Fig. 4, the outer dotted line on the left shows the In 

Range area created through machine learning, and the inner 

solid line area is the In Zone. In general, when an impact 

condition is added as an additional condition, the area tends 

to become smaller. The second picture on the right side 

shows a method of extracting the relevant areas into 

polygons of n points. Polygons must be created with a 

conservative approach to improve data reliability, and 

considering this conservatism and calculation speed, the 

weapons launch acceptable area provided to pilots in actual 

flight uses a polygonal shape as shown in the picture on the 

right. Since there is uncertainty in the learning data at the 

boundary of the data generated through learning, the learned 

data is extracted by simplifying the data into a smaller area 

than the machine learning model result to ensure a sufficient 

mission success rate and perform the mission in that area. 

This is because it is presented that the success rate can be 

guaranteed. 
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4.2. Generated Algorithm Rresults and Verification 
 

The algorithm was also verified by comparing the 

footprint of the algorithm and the weapon truth data used for 

this study. Figure 5 is the result of comparing the truth data 

of weapons generated under the same delivery conditions 

(left) and the results learned through this study (right) on the 

same scale. The dotted line represents the In Range, and the 

internal solid line represents the In Zone area.  

The second graph is the result of comparing the same 

results between In Zone and In Range, respectively. The red 

line shows algorithm algorithm-generated weapon 

launchable area and the blue line is the truth data that was 

used for machine learning. The reason why the comparison 

of the In Range on the right appears relatively accurate is 

because the actual footprint size is large, and in the case of 

the In Zone, not only the distance the bullet reaches but also 

more parameters are required compared to the In Range to 

set the impact condition. In Zone, the learned data tended to 

be somewhat biased to the left, and in In Range, it can be 

seen that overall, the learned data converged well into the 

actual data (Truth Data). 

 

 
 

 

 
Figure 5: Output Data Verification 

 

With the technological development of the latest weapons, 

it is not only difficult to accurately predict the weapon impact 

point using existing methods, but it is also becoming more 

difficult to provide optimal launch conditions to pilots in real 

time by considering massive amounts of data. This limitation 

is evident in aerial weapons where shooter aircraft and targets 

move at high speeds. To solve this problem, this study 

proposed a method that can provide pilots with a fast and 

accurate solution through machine learning based on a neural 

network algorithm (Dantas, 2021). Through the results of this 

study, the development of a weapon aiming algorithm using 

a SCG algorithm showed improved results in both accuracy 

and real-time assurance compared to previously existing 

methods. 

 

 

5. Conclusion  
 

Integration of new weapons into aircraft is divided into 

physical integration, electrical integration, and logical 

integration. Among these, there is no standardization, and the 

most time-consuming part is logical integration, which 

includes software integration between weapons and aircraft. 

For this software integration, the development of weapons 

aiming algorithms is an area related to the direct performance 

of weapons, which means that technology transfer and data 

acquisition are limited when integrating non-domestic 

weapons. This study selected the SCG method to develop an 

air-launched weapon aiming algorithm because it is fully 

automated, and includes no critical user-dependent 

parameters. In summary, this study established a process to 

develop one of the critical aircraft-weapon integration 

software, a fast and accurate weapon aiming algorithm that 

can be commonly used for aircraft integration of domestic 

air-launched weapons that will be continuously developed in 

the future. 
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