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ABSTRACT

This paper deals with the problem of time delay estimation using de-convolution. Two approaches, conjugate

gradient method and the total lease square method have been presented to solve the de-convolution problem.

Numerical simulation demonstrates the superior performance of the proposed methods over the conventional GCC

based algorithms and FIR filter method.
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I. Introduction

The estimation of time delay between two sensors
is important in many applications of sonar, radar,
geophysics, acoustic localizations, etc. In the last
two decades, several methods have been proposed
for solving the time delay problems. Generalized
Cross Correlation (GCC) proposed by Knapp and
Carter!"!
TDE.

obtained as the time lag that maximizes the cross

is the most commonly used method for
In this technique, the delay estimate is
correlation between the filtered versions of the

received signals. Several windows have been

proposed to improve the GCC in the presence of

1123 These windows depend on input power

noise
spectral density of the signal that are generally
unknown and need to be estimated. Chan" used a
discrete Wiener filter approach to obtain time delay
but this does not work well in a noisy environment.
Techniques

introduced for acoustic applications

de-convolution have been

[6]

using

Time delay, De-convolution, Conjugate gradient, Total least square

In this paper, we present a novel approach to
estimate the time delay based on de-convolution for
highly ill conditioned matrix. De-convolution is the
process of finding the impulse response from the
known values of the input and output. Two very
efficient linear equation solvers, conjugate gradient
method and total least square method”*”,  are
presented and are used to get an accurate estimate of
the time delay parameter in a noisy environment.
Our numerical simulation represent that the proposed
method performs better than
methods with the margin of 10dB in SNR to have

the conventional

the same output error.

This work is organized as follows. Section 2
describes the conventional GCC based windowing
and FIR filtering approach. In section 3, the time
delay estimation technique using de-convolution is
developed. Section 4 gives some numerical
examples and provides comparison with different
algorithms. The conclusion of our work is presented

in section 5.
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II. Generalized Cross Correlation (GCC)

Assume a linear time invariant causal system of
input z(¢). y(¢) is the time domain signal measured
at the output of the system that satisfy following

equations;
z(t) = oyslt—7]+ N () )
y(t) = ayslt—7,+ D]+ Ny (t) @)

where s(t) is an unknown signal, o;s(t—D) is a
shifted and scaled version of s(t), 7, is the initial
time delay, and A, () and MN,(¢) are unknown

noise sources. The problem is to estimate the time
delay D from the finite length of discrete
measurement of x(k) and y(k); k=1,2,...,/N. The
simplest and the most popular way to estimate D
will be to use of the cross correlation between z (k)
and y(k), ie.,

ny(T):E[$(t)y(t+T)]; —oo <7< 00, 3

where E[] is the expectation operator in time. Note
that N, (t) and N,(t) are zero mean stationary

signals independent with each other and s(t).

¢ (7) will have the maximum at 7= D. However,

in real situations, due to noise and reverberation as

well as with finite number of observations, cxy(r)

doest not always give a peak at the time delay D.

Knapp and Carter™” used a  smoothed
cross-correlation so called “Generalized Cross

Correlation(GCC)” to estimate 7. That is

GI'yGCC(w) = Clu(w) W(w)> (4)

Coyaoc(T) =y (1) *w (7)), 5)

where C,ycoer Cyy (w), Wlw) are the Fourier
transform of Coy GCO(T), cw(r), w(T) respectively,
Mw) is a window function, and * is the
convolution operator.

Various window functions have been suggested to

smooth the cross-correlation in order to sharpen the
maximum peak and suppress the minor peaks”’2’3].

They are summarized as:

2.1 Roth window
Mw) = (6)

where C, (w) is the power spectral density of

z(t)

2.2 SCOT (smoothed Coherence Transform)
window
The smoothed Coherence Transform has

following form;

1
W)=
Ci(w) Clw) @

where Cj(w) and C§(w) are the power spectral

density of z(t) and y(t).

2.3 PHAT (The Phase Transform)

The smoothing window is inversely proportional
to the magnitude of C,, (w), ie.,

Ty

1
Mw) = m . (€]

Ty

In an ideal case, the resulting cross correlation
will be

Cﬂfy(T) = 1F7<ny((w)

C () = IFT(exp”?) = §(t— D)

®

2.4 Wiener filtering approach

Another interesting approach is to use a discrete
FIR filter proposed by Chan". This method is
parametric in the sense that it estimates the
parameters of the FIR filter from signals z(k), and
y(k). The main idea is to pass the input z(k)
through a FIR filter with coefficients, a(n), and
then choose the optimum value of the parameters
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such that the filter output y(k) is close to the
desired output z(t+D) in the mean square error
sense. The filter output z(k) is related to the input
by;

z(k) = Ea(n)x(k’,—n). (10)

We truncate the summation to include a(n),
where P is large enough to guarantee D < PAt, At
is the sampling interval, and the time delay
parameter D is assumed to be positive. The Wiener
problem is to minimize the mean square error with

respect to the filter coefficients an, i.e.,

J=E{[y(k) —z(k)]*}

P 2
E{[ Za z(k—n) } ’ ab
s = QE{ {1 (k)— XPJ aln)z(k— x(k*i)}zo
da(i) Y n=0 ’
(12)

One can form this into a matrix equation

c,(0) c,(0) 0 4 0 | a(0)

(] [ ) 5 | al)
5 || s 5 7 0 5 | a3
(P |6(p) o(p=1) 4 ¢, (0)]a(p)
where
¢, (D) = E{y(k) x(k - 1)}, (14)
¢, (i) = E{x(k) x(k —i)}. (15)

The matrix equation can be solved using various
linear solvers. The time delay D corresponds to the
index of the coefficient a(n) which has the
maximum value. In case, when the time delay is not
an integer, the interpolation can be applied to the

problem.

1694

. TDE using De-convolution

Here we use the principle of de-convolution to
estimate the delay. Consider a linear, time invariant,
causal system with zero initial state. The relation
between the input z(k);k=1,2,...,/V, the impulse
response  h(k);k=1,2,..,P2, and the output
y(k);k=1,2,...,NV, is given by

y(k) = ZX(k—pH)h(p). (16)

If the input x(k), and output y(k) of a system
are known, then one can compute its impulse
response h(k) from (16). Equivalently, it can be
cast into the following matrix form;

AB=C, an
where
[x(1) 0 4 0 ]
X2 x() 4 0
e 5 5 7 5
Tlx(P) x(n-1) 4 x(1) ’
5 5 5
[X(N)  x(N=1) 4 x(N-P+1) |,
h(1) y()
h(2) »(2)
B= =
: , C . : (18)
h(P) Y(N) |y

Pxl1

De-convolution is the process of finding the
impulse response vector B from the known values of
the input z(k) and the output vector C. The discrete
de-convolution problem is essentially reduced to the
problem of solving a set of linear equations given
by (17). Typically N is larger than P and therefore
(17) needs to be solved in a least squares fashion.
The matrix A tends to be highly ill-conditioned. To
deal with this problem, we proposed two approaches
to solve this linear equation which will be briefly

explained below.



3.1 Conjugate gradient approach
For the solution of AB= C in (17), the conjugate
gradient method starts with an initial guess 5, for

the solution and lets”’

Py =-b A" R, =-b,4" (4B,-C), (19)
where superscript H denotes the conjugate transpose

of a matrix. At the r-th iteration the conjugate
gradient method develops the following:

t,= /1113,2 ; (20)
B. =B +tP, [e3))
R. =R +t AP , 2)
P,=P —bA"R,, 24
The norm is defined by
|[4R| = B 4" 4P, . 25)

The above equations are applied in a routine
fashion till the desired error criterion for the

residuals || R, || , is satisfied. In our case, the error

criterion is defined as

<10°°. (26)

The iteration is stopped when the above criterion
is satisfied.

3.2 Total lease square method
Given a data matrix A€R"(N>P) and an

observation vector CeR” which are
contaminated by error, one can find the Total Least

Square (TLS) solution of the following equation,

by applying the following algorithm.

We first find the singular values

D=[4:Cle RV by using the Singular
Value Decomposition (SVD).

U'DV =% =diag|c,,4 ,0,,0,.,, RMPD

c,20,23 20,20,,23 20,,20

4.,0,,]€

>

(28)

then try to find a good approximation of the matrix
D by looking at its condition number, and
comparing the small singular values to the maximum
singular value o, and then setting the small singular
values beyond a priori fixed threshold to zero. The

SVD of the approximated matrix

DA=[1:136']ERNX(PH) with the rank of r can be

written as

U'br=%= diag[o,,4 ,0,,0,4 ,0]e RV

(29)
o,>0,>3 >0,>0

and in this algorithm we use the condition number

91 .
St be greater than a priori threshold value.
T

For the orthonormal matrix V, we may write

V= [Vl 4 v, v, 4 vp, ] e R, (30)

n+l
such that Vi €R"™  Then the TLS solution of
the system (27) is given by

P+l
H
- ZVP+],f[v],f vy 3 VP,f]

i=r+l
xTLS = P+l s (3 1)

2
zvml,i

i=r+l

or

ZVP+l,i[Vl,i Va3 VP,f]H
Xps =" . (32)

C 2
1- Z Vpiii
=
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The detailed derivation of the formulation can be

found in the references”'".

IV. Numerical simulations

As a first example, consider a signal of three
sinusoids of frequencies [2, 3, 5]Hz with magnitudes
[1, 2, 0.5], ie.,

x(t) =sin(4zt) + 2sin(67 1) + 0.5sin(1077) |

The output will be a delayed version of x(k) and
the time delay D equals 0.152sec.

y(t) = sin[47(t — 0.152)] +
2sin[67(f — 0.152)] + 0.5sin[107(¢ — 0.152)].

We sampled the signals with a sampling interval
At=0.01sec during the time interval of [0, 2]
seconds and padded with zeros in the interval from
(2, 4]. The input 2(k) and output y(k) are shown
in Fig. 1. All the approaches described in the
previous section had been simulated and the results
are shown in Fig. 2. One can observe that for GCC
with windows, Fig. 2-(e)(f) have smaller minor
peaks than the case of GCC without windows, Fig.
2-(d). All the conventional approaches, Wiener
filtering, GCC-Roth window, GCC-SCOT window,
and GCC-PHAT window, have a peak at the desired
time delay at =0.152sec, but the main peaks are not

sharp as the proposed methods. Fig. 2-(a)(b) shows

sample signal

input
SH — - — - output |

time [sec]
Fig. 1. Sample signal
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Time delay [sec]

Fig. 2. Responses of conventional approaches and
proposed approaches

that the de-convolution using CGM and TLS offer
better resolutions and less values for the minor
peaks.

For the next example, the input and output was

modeled by the following relationships;

x(t) =sin(10z ¢) + 2sin(187¢)
+0.5sin(507¢) + N, (t) ,

() =sin[107( — 0.152)] +

2sin[187(¢ —0.152)]+ 0.5sin[50z(t — 0.152)]+ N, (¢),

2
where NVi() = N, ., N(O, N, ); i=1,2 are
independent and identically distributed (i.i.d.) noise

sequences following normal distribution with zero

mean and variance of N?

mag *

Fig. 3 shows the Monte

Carlo simulation for the SNR versus the error in the

|Dﬁst - q

D , where

estimation which is defined by



GCC-Roth window 7

BCC-SCOT window—— s

GCC-PHAT window ——m
1| Deconvolution-TLS ancow

0 5 10 15 i) 25 0
SNR [dB]

Fig. 3. SNR versus error in the estimation

D,,, is an estimation of D. The sampling interval
was At =0.01sec and the other condition was same
as that of the first example. As shown in Fig. 3, the
superior performance of the proposed methods is
demonstrated in comparison with conventional GCC
based algorithms. Observe that the TLS approach
generates better noise immunity than the other
methods even though the CGM method offers better
resolution than TLS method. Usually, the CGM
approach converges much faster than the other
iterative linear equation solver with a certain
threshold of error bound. Fig. 4 shows the condition
number, defined as a ratio of the maximum
eigenvalue and the minimum eigenvalue, of the
matrix A with changing SNR. The condition number
tends to get worse as the SNR get high.

For the third example, consider a signal of three
sinusoids of frequencies [0.4f, .., 0-6f, s fua JHZ
with magnitudes [1, 2, 0.5], i.e.,

condition number = 4 /

min
21

20

SNR [dB]

Fig. 4. Condition number of matrix A with SNR

x(t) =sin2z0.4f,, 1) +2sin(270.6f, . 1)
+0.5sin(27 f,

max t) + Nl (t)
y(t) =sin[270.4 f, (t—0.152)]
+2sin[270.6 £, (t—0.152)]

+0.5sin[27 £, (¢ —0.152)]+ N, (),

where Ni (t) & NmugN(07 Nnmgz) ; i=1,2_
SNR was equal to 18dB which is equivalent to
N,y = 0.1448 in this example. Fig. 5 plots the

maximum bandwidth of the signal, f versus the

‘Dest 7&

D

the maximum frequency in the signal f, .., which is

max?

error in the estimation, . The x-axis is

not actual highest frequency in the signal because of

the zero padding. f,,. Wwas scanned from
0.2Hz(=0.004f t0 50z (= f yyguist)» Where

S Nyquist 18 the Nyquist sampling criteria. Both

Nyquist )

de-convolution -TLS method and GCC-without
window work better at low frequency than
de-convolution -CGM  approach. @ The CGM
approach converges fast but need a threshold of
error bound. The fundamental limitation of the
conjugate gradient method is that it requires, in
general, N cycles to reach the minimum. We need
a procedure which will perform most of the function
minimization in the first few cycles.

For the forth example, multipath environment
signals has been introduced to the first example. The
signal is same as the first example and we set the
multipath delay as 0.25sec, 0.3sec, 0.5sec with the

Decanwalution-TLS |
\ Deconvolution-CGh
15 B
[ GCC-withaut windaw |
a0 | '
i
25| |
i
107 B 1

10 L L L L L L L L L
o 5 10 15 20 25 30 35 40 45 a0

Maximurn frequency, £ [Hz]

Fig. 5. Condition number of matrix A wBandwidth of the
signal versus error in the estimation
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magnitude 0.3, 0.2, 0.1 respectively. That is;

x(¢) = sin(4x £) + 2sin(67 ¢) + 0.5sin(107 ¢)
y(t) = x(t — 0.15) + 0.3x(t — 0.25)
+0.2x(t —0.3) +0.1x(t — 0.5) + N(?),

Fig. 6 shows the result with multipath signal.
Only CGM and TLS approach can estimate the time
delay. Fig.7 respesents the Monte Carlo simulation
for the SNR versus the error in the estimation which
\Dess — D)

D

same as that of the first example.

is defined by . The other condition was

The superior performance of the proposed
methods is demonstrated in comparison with
conventional GCC based algorithms.

The constraints of this research can be
summarized as follows;

 If the multipath components become large, the

performance severely decreases and none of the

time delay method can be applied.

Generally, including the proposed approach,

time delay estimation requires much faster

sampling rate than the maximum frequency in
the signal.

* The proposed method works well for the
wideband signal like voice signal, not for the
narrowband signal like radar signal.

* In the future research, various types of signal

would be examined for a better analysis of the

work.

(@) Deconvolution-TLS

. . .
0 0.1 02 03 04 05 06 07 08 09 1
(b) Deconvolution-CGM

Response
o
o o
%
|

T Y T T T T
0 0.1 02 03 04 05 06 07 08 09 1
(c) FIR-Wiener

0.1 B

0.05 /\/ﬁ/—\_/_/’
0 1
. . . . ! !

. . .
0 0.1 02 03 04 05 06 07 08 09 1
Time delay [sec]

Fig. 6. Simulation with multipath signal
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Fig. 7. SNR performance of multipath signal

V. Conclusions

This paper deals with the problem of time delay
estimation using deconvolution. Two approaches,
conjugate gradient method and the total lease square
method have been presented to solve the
de-convolution problem. Numerical simulation
demonstrated the superior performance of the
proposed methods over the conventional GCC based
algorithms and FIR filter method.
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