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ABSTRACT

This paper deals with the problem of time delay estimation using de-convolution. Two approaches, conjugate 

gradient method and the total lease square method have been presented to solve the de-convolution problem. 

Numerical simulation demonstrates the superior performance of the proposed methods over the conventional GCC 

based algorithms and FIR filter method.
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Ⅰ. Introduction

The estimation of time delay between two sensors 

is important in many applications of sonar, radar, 

geophysics, acoustic localizations, etc. In the last 

two decades, several methods have been proposed 

for solving the time delay problems. Generalized 

Cross Correlation (GCC) proposed by Knapp and 

Carter
[1] is the most commonly used method for 

TDE. In this technique, the delay estimate is 

obtained as the time lag that maximizes the cross 

correlation between the filtered versions of the 

received signals. Several windows have been 

proposed to improve the GCC in the presence of 

noise 
[1,2,3]. These windows depend on input power 

spectral density of the signal that are generally 

unknown and need to be estimated
[4]. Chan[5] used a 

discrete Wiener filter approach to obtain time delay 

but this does not work well in a noisy environment. 

Techniques using de-convolution have been 

introduced for acoustic applications
[6]. 

In this paper, we present a novel approach to 

estimate the time delay based on de-convolution for 

highly ill conditioned matrix. De-convolution is the 

process of finding the impulse response from the 

known values of the input and output. Two very 

efficient linear equation solvers, conjugate gradient 

method and total least square method
[7,8,9], are 

presented and are used to get an accurate estimate of 

the time delay parameter in a noisy environment. 

Our numerical simulation represent that the proposed 

method performs better than the conventional 

methods with the margin of 10dB in SNR to have 

the same output error.

This work is organized as follows. Section 2 

describes the conventional GCC based windowing 

and FIR filtering approach. In section 3, the time 

delay estimation technique using de-convolution is 

developed. Section 4 gives some numerical 

examples and provides comparison with different 

algorithms. The conclusion of our work is presented 

in section 5.
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Ⅱ. Generalized Cross Correlation (GCC)

Assume a linear time invariant causal system of 

input  .   is the time domain signal measured 

at the output of the system that satisfy following 

equations;

    (1)

    (2)

where   is an unknown signal,   is a 

shifted and scaled version of  ,   is the initial 

time delay, and   and   are unknown 

noise sources. The problem is to estimate the time 

delay D from the finite length of discrete 

measurement of   and  ;  . The 

simplest and the most popular way to estimate D 

will be to use of the cross correlation between   

and  , i.e.,

 ; ∞ ∞, (3)

where E[] is the expectation operator in time. Note 

that   and   are zero mean stationary 

signals independent with each other and  . 

  will have the maximum at  . However, 

in real situations, due to noise and reverberation as 

well as with finite number of observations,   

doest not always give a peak at the time delay D. 

Knapp and Carter
[1,4] used a smoothed 

cross-correlation so called “Generalized Cross 

Correlation(GCC)” to estimate . That is  

  , (4)

   , (5)

where ,   ,   are the Fourier 

transform of  ,  ,   respectively, 

  is a window function, and * is the 

convolution operator.

Various window functions have been suggested to 

smooth the cross-correlation in order to sharpen the 

maximum peak and suppress the minor peaks[1,2,3]. 

They are summarized as:

2.1 Roth window

 


, (6)

where   is the power spectral density of 

 .

2.2 SCOT (smoothed Coherence Transform) 
window

The smoothed Coherence Transform has 

following form;

 


(7)

where 
  and 

  are the power spectral 

density of   and  .

2.3 PHAT (The Phase Transform)

The smoothing window is inversely proportional 

to the magnitude of  , i.e.,

 


. (8)

In an ideal case, the resulting cross correlation 

will be

  
      

(9)

2.4 Wiener filtering approach 
Another interesting approach is to use a discrete 

FIR filter proposed by Chan[5]. This method is 

parametric in the sense that it estimates the 

parameters of the FIR filter from signals  , and 

 . The main idea is to pass the input   

through a FIR filter with coefficients,  , and 

then choose the optimum value of the parameters 
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such that the filter output   is close to the 

desired output   in the mean square error 

sense. The filter output   is related to the input 

by;

 




 . (10)

We truncate the summation to include  , 

where P is large enough to guarantee ≤,  

is the sampling interval, and the time delay 

parameter D is assumed to be positive. The Wiener 

problem is to minimize the mean square error with 

respect to the filter coefficients an, i.e.,

  











 , (11)




    







  , 

(12)

One can form this into a matrix equation
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where

{ })()()( ikxkyEicxy −= , (14)

{ })()()(2 ikxkxEic −= . (15)

The matrix equation can be solved using various 

linear solvers. The time delay D corresponds to the 

index of the coefficient   which has the 

maximum value. In case, when the time delay is not 

an integer, the interpolation can be applied to the 

problem.

Ⅲ. TDE using De-convolution

Here we use the principle of de-convolution to 

estimate the delay. Consider a linear, time invariant, 

causal system with zero initial state. The relation 

between the input   , the impulse 

response   , and the output 

  , is given by

∑
=

+−=
P

p

phpkxky
1

)()1()( . (16)

If the input  , and output   of a system 

are known, then one can compute its impulse 

response   from (16). Equivalently, it can be 

cast into the following matrix form;

  , (17)

where
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De-convolution is the process of finding the 

impulse response vector B from the known values of 

the input   and the output vector C. The discrete 

de-convolution problem is essentially reduced to the 

problem of solving a set of linear equations given 

by (17). Typically N is larger than P and therefore 

(17) needs to be solved in a least squares fashion. 

The matrix A tends to be highly ill-conditioned. To 

deal with this problem, we proposed two approaches 

to solve this linear equation which will be briefly 

explained below.
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3.1 Conjugate gradient approach
For the solution of    in (17), the conjugate 

gradient method starts with an initial guess  for 

the solution and lets
[7]

,)( 01010 CABAbRAbP HH −−=−= −− (19)

where superscript H denotes the conjugate transpose 

of a matrix. At the r-th iteration the conjugate 

gradient method develops the following:

,1
2

r

r
AP

t = (20)

,1 rrrr PtBB +=+ (21)

,1 rrrr APtRR +=+ (22)

,1
2

1+

=
r

H
r

RA
b (23)

.11 ++ −= r
H

rrr RAbPP (24)

The norm is defined by

.2
r

HH
rr PAAPAP = (25)

The above equations are applied in a routine 

fashion till the desired error criterion for the 

residuals ∥∥, is satisfied. In our case, the error 

criterion is defined as

.10 6−≤
−

C
CABr

(26)

The iteration is stopped when the above criterion 

is satisfied.

3.2 Total lease square method

Given a data matrix )( PNRA PN >∈ ×
 and an 

observation vector
PRC ∈ which are 

contaminated by error, one can find the Total Least 

Square (TLS) solution of the following equation,

CAB = . (27)

by applying the following algorithm.

We first find the singular values 

)1(]:[ +×∈= PNRCAD by using the Singular 

Value Decomposition (SVD).

0
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, 

(28)

then try to find a good approximation of the matrix 

D by looking at its condition number, and 

comparing the small singular values to the maximum 

singular value  and then setting the small singular 

values beyond a priori fixed threshold to zero. The 

SVD of the approximated matrix

)1(]ˆ:ˆ[ˆ +×∈= PNRCAD with the rank of r can be 

written as

0
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and in this algorithm we use the condition number 




 to be greater than a priori threshold value.

For the orthonormal matrix V, we may write

[ ] )1()1(
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Prr RvvvvV LL , (30)

such that
1+∈ n

i Rv . Then the TLS solution of 

the system (27) is given by

∑

∑
+

+=
+

+

+=
+ ⎟

⎠

⎞
⎜
⎝

⎛
−

= 1

1

2
,1

,

1

1
,2,1,1 ][

P

ri
iP

H
iP

P

ri
iiiP

TLS

v

vvvv
x

K

, (31)

or

∑

∑

=
+

=
+

−
= r

i
iP

H
iP

r

i
iiiP

TLS

v

vvvv
x

1

2
,1

,
1

,2,1,1

1

][ K

. (32)



The Journal of Korean Institute of Communications and Information Sciences '16-12 Vol.41 No.12

1696

Fig. 2. Responses of conventional approaches and 
proposed approaches

Fig. 1. Sample signal 

The detailed derivation of the formulation can be 

found in the references[9.10].

Ⅳ. Numerical simulations

As a first example, consider a signal of three 

sinusoids of frequencies [2, 3, 5]Hz with magnitudes 

[1, 2, 0.5], i.e., 

)10sin(5.0)6sin(2)4sin()( ttttx πππ ++= , 

The output will be a delayed version of   and 

the time delay D equals 0.152sec.

)]152.0(10sin[5.0)]152.0(6sin[2
)]152.0(4sin[)(

−+−
+−=

tt
tty

ππ
π

.

We sampled the signals with a sampling interval 

  during the time interval of [0, 2] 

seconds and padded with zeros in the interval from 

(2, 4]. The input   and output   are shown 

in Fig. 1. All the approaches described in the 

previous section had been simulated and the results 

are shown in Fig. 2. One can observe that for GCC 

with windows, Fig. 2-(e)(f) have smaller minor 

peaks than the case of GCC without windows, Fig. 

2-(d). All the conventional approaches, Wiener 

filtering, GCC-Roth window, GCC-SCOT window, 

and GCC-PHAT window, have a peak at the desired 

time delay at t=0.152sec, but the main peaks are not 

sharp as the proposed methods. Fig. 2-(a)(b) shows 

that the de-convolution using CGM and TLS offer 

better resolutions and less values for the minor 

peaks.

For the next example, the input and output was 

modeled by the following relationships;

)()50sin(5.0
)18sin(2)10sin()(

1 tNt
tttx

++
+=

π
ππ

, 

),()]152.0(50sin[5.0)]152.0(18sin[2
)]152.0(10sin[)(

2 tNtt
tty

+−+−
+−=

ππ
π

where ),0()( 2
magmagi NNNtN ≈ ; i=1,2 are 

independent and identically distributed (i.i.d.) noise 

sequences following normal distribution with zero 

mean and variance of 
 . Fig. 3 shows the Monte 

Carlo simulation for the SNR versus the error in the 

estimation which is defined by 

 
, where 
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condition number = λmax / λmin

Fig. 4. Condition number of matrix A with SNR 

Fig. 3. SNR versus error in the estimation

Fig. 5. Condition number of matrix A wBandwidth of the 
signal versus error in the estimation

 is an estimation of D. The sampling interval 

was   and the other condition was same 

as that of the first example. As shown in Fig. 3, the 

superior performance of the proposed methods is 

demonstrated in comparison with conventional GCC 

based algorithms. Observe that the TLS approach 

generates better noise immunity than the other 

methods even though the CGM method offers better 

resolution than TLS method. Usually, the CGM 

approach converges much faster than the other 

iterative linear equation solver with a certain 

threshold of error bound. Fig. 4 shows the condition 

number, defined as a ratio of the maximum 

eigenvalue and the minimum eigenvalue, of the 

matrix A with changing SNR. The condition number 

tends to get worse as the SNR get high.

For the third example, consider a signal of three 

sinusoids of frequencies    Hz 

with magnitudes [1, 2, 0.5], i.e.,

)()2sin(5.0
)6.02sin(2)4.02sin()(

1max

maxmax

tNtf
tftftx

++
+=

π
ππ

,

),()]152.0(2sin[5.0
)]152.0(6.02sin[2

)]152.0(4.02sin[)(

2max

max

max

tNtf
tf
tfty

+−+
−+

−=

π
π

π

where ),0()( 2
magmagi NNNtN ≈ ; i=1,2.

SNR was equal to 18dB which is equivalent to 

   in this example. Fig. 5 plots the 

maximum bandwidth of the signal,  , versus the 

error in the estimation, 

 
. The x-axis is 

the maximum frequency in the signal  , which is 

not actual highest frequency in the signal because of 

the zero padding.   was scanned from 

    to    , where 

 is the Nyquist sampling criteria. Both 

de-convolution–TLS method and GCC-without 

window work better at low frequency than 

de-convolution–CGM approach. The CGM 

approach converges fast but need a threshold of 

error bound. The fundamental limitation of the 

conjugate gradient method is that it requires, in 

general, N cycles to reach the minimum. We need 

a procedure which will perform most of the function 

minimization in the first few cycles.

For the forth example, multipath environment 

signals has been introduced to the first example. The 

signal is same as the first example and we set the 

multipath delay as 0.25sec, 0.3sec, 0.5sec with the 
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Fig. 6. Simulation with multipath signal 

magnitude 0.3, 0.2, 0.1 respectively. That is;

 

)10sin(5.0)6sin(2)4sin()( ttttx πππ ++=

 ),()5.0(1.0)3.0(2.0
)25.0(3.0)15.0()(
tNtxtx
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Fig. 6 shows the result with multipath signal. 

Only CGM and TLS approach can estimate the time 

delay. Fig.7 respesents the Monte Carlo simulation 

for the SNR versus the error in the estimation which 

is defined by 

 
. The other condition was 

same as that of the first example. 

The superior performance of the proposed 

methods is demonstrated in comparison with 

conventional GCC based algorithms.

The constraints of this research can be 

summarized as follows;

y If the multipath components become large, the 

performance severely decreases and none of the 

time delay method can be applied.

y Generally, including the proposed approach, 

time delay estimation requires much faster 

sampling rate than the maximum frequency in 

the signal.

y The proposed method works well for the 

wideband signal like voice signal, not for the 

narrowband signal like radar signal.

y In the future research, various types of signal 

would be examined for a better analysis of the 

work.

Ⅴ. Conclusions

This paper deals with the problem of time delay 

estimation using deconvolution. Two approaches, 

conjugate gradient method and the total lease square 

method have been presented to solve the 

de-convolution problem. Numerical simulation 

demonstrated the superior performance of the 

proposed methods over the conventional GCC based 

algorithms and FIR filter method.
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