• Title/Summary/Keyword: conjecture (*)

Search Result 428, Processing Time 0.023 seconds

On a Conjecture of E. T. H. Wang

  • Kim, Si Joo
    • Honam Mathematical Journal
    • /
    • v.11 no.1
    • /
    • pp.15-19
    • /
    • 1989
  • A conjecture of E. T. H. Wang asserts that if every diagonal disjoint from m mutually disjoint zero diagonals of $A{\in}{\Omega}_n$ has a constant sum, then all entries off the m zero diagonals are equal to l/(n-m). E. T. H. Wang proved the conjecture for m=0, 1, n-2 and n-1. In the present paper, it is proved that the conjecture holds true for m=2.

  • PDF

MINIMAL RESOLUTION CONJECTURES AND ITS APPLICATION

  • Cho, Young-Hyun
    • Communications of the Korean Mathematical Society
    • /
    • v.13 no.2
    • /
    • pp.217-224
    • /
    • 1998
  • In this paper we study the minimal resolution conjecture which is a generalization of the ideal generation conjecture. And we show how the results about this conjecture can make the calculation of minimal resolution in certain cases.

  • PDF

Survey of the Arithmetic and Geometric Approach to the Schottky Problem

  • Jae-Hyun Yang
    • Kyungpook Mathematical Journal
    • /
    • v.63 no.4
    • /
    • pp.647-707
    • /
    • 2023
  • In this article, we discuss and survey the recent progress towards the Schottky problem, and make some comments on the relations between the André-Oort conjecture, Okounkov convex bodies, Coleman's conjecture, stable modular forms, Siegel-Jacobi spaces, stable Jacobi forms and the Schottky problem.

SOME RESULTS RELATED TO DIFFERENTIAL-DIFFERENCE COUNTERPART OF THE BRÜCK CONJECTURE

  • Md. Adud;Bikash Chakraborty
    • Communications of the Korean Mathematical Society
    • /
    • v.39 no.1
    • /
    • pp.117-125
    • /
    • 2024
  • In this paper, our focus is on exploring value sharing problems related to a transcendental entire function f and its associated differential-difference polynomials. We aim to establish some results which are related to differential-difference counterpart of the Brück conjecture.

EFFICINET GENERATION OF MAXIMAL IDEALS IN POLYNOMIAL RINGS

  • Kim, Sunah
    • Bulletin of the Korean Mathematical Society
    • /
    • v.29 no.1
    • /
    • pp.137-143
    • /
    • 1992
  • The purpose of this paper is to provide the affirmative solution of the following conjecture due to Davis and Geramita. Conjecture; Let A=R[T] be a polynomial ring in one variable, where R is a regular local ring of dimension d. Then maximal ideals in A are complete intersection. Geramita has proved that the conjecture is true when R is a regular local ring of dimension 2. Whatwadekar has rpoved that conjecture is true when R is a formal power series ring over a field and also when R is a localization of an affine algebra over an infinite perfect field. Nashier also proved that conjecture is true when R is a local ring of D[ $X_{1}$,.., $X_{d-1}$] at the maximal ideal (.pi., $X_{1}$,.., $X_{d-1}$) where (D,(.pi.)) is a discrete valuation ring with infinite residue field. The methods to establish our results are following from Nashier's method. We divide this paper into three sections. In section 1 we state Theorems without proofs which are used in section 2 and 3. In section 2 we prove some lemmas and propositions which are used in proving our results. In section 3 we prove our main theorem.eorem.rem.

  • PDF

Designing Mathematical Activities Centered on Conjecture and Problem Posing in School Mathematics (학교수학에서 추측과 문제제기 중심의 수학적 탐구 활동 설계하기)

  • Do, Jong-Hoon
    • The Mathematical Education
    • /
    • v.46 no.1 s.116
    • /
    • pp.69-79
    • /
    • 2007
  • Students experience many problem solving activities in school mathematics. These activities have focused on finding the solution whose existence was known, and then again conjecture about existence of solution or posing of problems has been neglected. It needs to put more emphasis on conjecture and problem posing activities in school mathematics. To do this, a model and examples of designing mathematical activities centered on conjecture and problem posing are needed. In this article, we introduce some examples of designing such activities (from the pythagorean theorem, the determination condition of triangle, and existing solved-problems in textbook) and examine suggestions for mathematics education. Our examples can be used as instructional materials for mathematically able students at middle school.

  • PDF

ON WIELANDT-MIRSKY'S CONJECTURE FOR MATRIX POLYNOMIALS

  • Le, Cong-Trinh
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.5
    • /
    • pp.1273-1283
    • /
    • 2019
  • In matrix analysis, the Wielandt-Mirsky conjecture states that $$dist({\sigma}(A),{\sigma}(B)){\leq}{\parallel}A-B{\parallel}$$ for any normal matrices $A,B{\in}{\mathbb{C}}^{n{\times}n}$ and any operator norm ${\parallel}{\cdot}{\parallel}$ on $C^{n{\times}n}$. Here dist(${\sigma}(A),{\sigma}(B)$) denotes the optimal matching distance between the spectra of the matrices A and B. It was proved by A. J. Holbrook (1992) that this conjecture is false in general. However it is true for the Frobenius distance and the Frobenius norm (the Hoffman-Wielandt inequality). The main aim of this paper is to study the Hoffman-Wielandt inequality and some weaker versions of the Wielandt-Mirsky conjecture for matrix polynomials.

A Robust Conjecture on the Relationship among the Expected Profits of Various Newsvendor Models (여러 가지 뉴스벤더모델의 기대값 사이의 관계에 대한 견고한 추측)

  • Won, You-Kyung
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.37 no.1
    • /
    • pp.1-18
    • /
    • 2012
  • The present study provides some extensions over a recent work in Won (2011) which investigates properties of the static newsvendor problem under a schedule involving progressive multiple discounts under the assumption that demand is given exogenously. Khouja (1995, 1996) formulated the extended versions over the classical newsvendor model with various discount policies including all-units discount and/or multiple discounts and found that the extended newsvendor models with discount schedules yield higher optimal expected profits than the classical newsvendor model with no-discounts. In this study, we establish a robust conjecture as a stronger statement than Khouja's findings with regard to the general relationship among the expected profits of newsvendor models in the sense that the conjecture holds for every order quantity as well as the optimal order quantity. The conjecture encourages the newsvendor facing quantity discounts to safely implement her own discounts policy to customer or accept quantity discounts offered by the supplier even if the optimal order quantity cannot be ordered due to additional restrictions such as budget or warehouse capacity constraints because the newsvendor models with quantity discounts always yield higher expected profit than the classic newsvendor model without quantity discounts regardless of the order quantity. Results from wide experiments with various probability distributions of demand strongly support our conjecture.