Acknowledgement
The second author was supported by the 2022 scientific promotion program funded by Jeju National University.
References
- J. A. Alvarez Lopez, The basic component of the mean curvature of Riemannian foliations, Ann. Global Anal. Geom., 10(1992), 179-194. https://doi.org/10.1007/BF00130919
- R. Caddeo, S. Montaldo and P. Piu, On biharmonic maps, Contemp. Math., 288(2001), 286-290. https://doi.org/10.1090/conm/288/04836
- B.-Y. Chen, Some open problems and conjectures on submanifolds of finite type, Soochow J. Math., 17(1991), 169-188.
- Y. J. Chiang and R. Wolak, Transversally biharmonic maps between foliated Riemannian manifolds, Internat. J. Math., 19(2008), 981-996. https://doi.org/10.1142/S0129167X08004972
- D. Dominguez, A tenseness theorem for Riemannian foliations, C. R. Acad. Sci. Paris Ser. I Math., 320(1995), 1331-1335.
- S. Dragomir and A. Tommasoli, Harmonic maps of foliated Riemannian manifolds, Geom. Dedicata, 162(2013), 191-229. https://doi.org/10.1007/s10711-012-9723-3
- X. Fu, J. Qian and S. D. Jung, Harmonic maps on weighted Riemannian foliations, arXiv:2212.05639v2 [math.DG].
- M. P. Gaffney, A special Stokes' theorem for complete Riemannian manifold, Ann. of Math., 60(1954), 140-145. https://doi.org/10.2307/1969703
- G. Y. Jiang, 2-harmonic maps and their first and second variational formula, Chinese Ann. Math. Ser. A, 7(1986), 389-402.
- S. D. Jung, The first eigenvalue of the transversal Dirac operator, J. Geom. Phys., 39(2001), 253-264. https://doi.org/10.1016/S0393-0440(01)00014-6
- S. D. Jung, Variation formulas for transversally harmonic and biharmonic maps, J. Geom. Phys., 70(2013), 9-20 https://doi.org/10.1016/j.geomphys.2013.03.012
- M. J. Jung and S. D. Jung, On transversally harmonic maps of foliated Riemannian manifolds, J. Korean Math. Soc., 49(2012), 977-991. https://doi.org/10.4134/JKMS.2012.49.5.977
- M. J. Jung and S. D. Jung, Liouville type theorems for transversally harmonic and biharmonic maps, J. Korean Math. Soc., 54(2017), 763-772. https://doi.org/10.4134/JKMS.j160208
- F. W. Kamber and P. Tondeur, Infinitesimal automorphisms and second variation of the energy for harmonic foliations, Tohoku Math. J., 34(1982), 525-538.
- J. J. Konderak and R. A. Wolak, Transversally harmonic maps between manifolds with Riemannian foliations, Q. J. Math., 54(2003), 335-354 https://doi.org/10.1093/qjmath/54.3.335
- P. March, M. Min-Oo and E. A. Ruh, Mean curvature of Riemannian foliations, Canad. Math. Bull., 39(1996), 95-105. https://doi.org/10.4153/CMB-1996-012-4
- A. Mason, An application of stochastic ows to Riemannian foliations, Houston J. Math., 26(2000), 481-515.
- P. Molino, Riemannian foliations, Birkhuser Boston, Inc., Boston, MA, 1988, xii+339 pp.
- N. Nakauchi, H. Urakawa and S. Gudmundsson, Biharmonic maps into a Riemannian manifold of non-positive curvature, Geom. Dedicata, 169(2014), 263-272. https://doi.org/10.1007/s10711-013-9854-1
- J. S. Pak and S. D. Jung, A transversal Dirac operator and some vanishing theorems on a complete foliated Riemannian manifold, Math. J. Toyama Univ., 16(1993), 97-108.
- H. K. Pak and J. H. Park, Transversal harmonic transformations for Riemannian foliations, Ann. Global Anal. Geom., 30(2006), 97-105. https://doi.org/10.1007/s10455-006-9032-x
- E. Park and K. Richardson, The basic Laplacian of a Riemannian foliation, Amer. J. Math., 118(1996), 1249-1275. https://doi.org/10.1353/ajm.1996.0053
- P. Tondeur, Foliations on Riemannian manifolds, Springer-Verlag, New York, 1988, xii+247 pp.
- P. Tondeur, Geometry of foliations, Monogr. Math. 90, Birkhuser Verlag, Basel, 1997, viii+305 pp.
- S. T, Yau, Some function-theoretic properties of complete Riemannian manifold and their applications to geometry, Indiana Univ. Math. J., 25(1976), 659-670. https://doi.org/10.1512/iumj.1976.25.25051
- S. Yorozu and T. Tanemura, Green's theorem on a foliated Riemannian manifold and its applications, Acta Math. Hungar., 56(1990), 239-245. https://doi.org/10.1007/BF01903838