• Title/Summary/Keyword: confocal microscopy

Search Result 438, Processing Time 0.029 seconds

Effect of Na3PO4 Concentration on The Formation Behavior of PEO films on AZ31 Mg Alloy (AZ31 Mg합금의 PEO피막 형성거동에 미치는 인산나트륨 농도의 영향)

  • Moon, Sungmo;Kim, Juseok
    • Journal of the Korean institute of surface engineering
    • /
    • v.52 no.5
    • /
    • pp.265-274
    • /
    • 2019
  • Formation behavior of PEO (Plasma Electrolytic Oxidation) films on AZ31 Mg alloy was investigated under application of 310 Hz AC as a function of $Na_3PO_4$ concentration from 0.02 M to 0.2 M. Film formation voltage and in-situ observation of arcs generated on the specimen surface were recorded with time, and surface morphologies of the PEO films were investigated using optical microscopy, confocal scanning laser microscopy and scanning electron microscopy. PEO film formation voltage decreased linearly with increasing $Na_3PO_4$ concentration which is attributed to the increase of solution pH. PEO films were grown uniformly over the entire surface in $Na_3PO_4$ solutions between 0.05 M and 0.1 M. However, non-uniform PEO films with white spots were formed in $Na_3PO_4$ solutions containing more than 0.1 M. Thickness and roughness of PEO films on AZ31 Mg alloy increased linearly with increasing $Na_3PO_4$ concentration and their increasing rates appeared to be much higher under 1 M than above 1 M. The experimental results suggest that phosphate ions can contribute to the formation of PEO films but higher $Na_3PO_4$ concentration more than 1 M results in local damages of PEO films due to repeated generation of white arcs at the same surface site of AZ31 Mg alloy.

Micro-imaging techniques for evaluation of plastic microfluidic chip

  • Kim, Jung-Kyung;Hyunwoo Bang;Lee, Yongku;Chanil Chung;Yoo, Jung-Yul;Yang, Sang-Sik;Kim, Jin-Seung;Park, Sekwang;Chang, Jun-Keun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.1 no.4
    • /
    • pp.239-247
    • /
    • 2001
  • The Fluorescence-Activated Cell Sorter (FACS) is a well-established instrument used for identifying, enumerating, classifying and sorting cells by their physical and optical characteristics. For a miniaturized FACS device, a disposable plastic microchip has been developed which has a hydrodynamic focusing chamber using soft lithography. As the characteristics of the spatially confined sample stream have an effect on sample throughput, detection efficiency, and the accuracy of cell sorting, systematic fluid dynamic studies are required. Flow visualization is conducted with a laser scanning confocal microscopy (LSCM), and three-dimensional flow structure of the focused sample stream is reconstructed from 2D slices acquired at $1\mutextrm{m}$ intervals in depth. It was observed that the flow structure in the focusing chamber is skewed by unsymmetrical velocity profile arising from trapezoidal cross section of the microchannel. For a quantitative analysis of a microscopic flow structure, Confocal Micro-PIV system has been developed to evaluate the accelerated flow field in the focusing chamber. This study proposes a method which defines the depth of the measurement volume using a detection pinhole. The trajectories of red blood cells (RBCs) and their interactions with surrounding flow field in the squeezed sample stream are evaluated to find optimal shape of the focusing chamber and fluid manipulation scheme for stable cell transporting, efficient detection, and sorting

  • PDF

Phase-shifting diffraction grating interferometer for testing concave mirrors (오목 거울 측정용 위상천이 회절격자 간섭계)

  • 황태준;김승우
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.4
    • /
    • pp.392-398
    • /
    • 2003
  • We present a novel concept of a phase-shifting diffraction-grating interferometer, which is intended for the optical testing of concave mirrors with high precision. The interferometer is configured with a single reflective diffraction grating, which performs multiple functions of beam splitting, beam recombination, and phase shifting. The reference and test wave fronts are generated by means of reflective diffraction at the focal plane of a microscope objective with large numerical aperture, which allows testing fast mirrors with low f-numbers. The fiber-optic confocal design is adopted for the microscope objective to focus a converging beam on the diffractive grating, which greatly reduces the alignment error between the focusing optics and the diffraction grating. Translating the grating provides phase shifting, which allows measurement of the figure errors of the test mirror to nanometer accuracy.

Quantitative Assessment of Initial Wear Characteristics of CoCr-Based Alloys (CoCr 기반 합금의 초기 마모 특성에 대한 정량적 평가)

  • Cha, Su-Bin;Kim, Hoe-Jin;Huynh, Ngoc-Phat;Chung, Koo-Hyun
    • Tribology and Lubricants
    • /
    • v.36 no.4
    • /
    • pp.199-206
    • /
    • 2020
  • CoCr-based alloys have been developed as wear-resistant materials owing to their excellent mechanical properties and strong wear resistance. The purpose of this study is to experimentally assess the frictional and wear characteristics of CoCr-based alloys slid against two different counter materials subjected to various normal forces to determine the expansion applicability of CoCr-based alloys. CoCrMo and CoCr alloys were selected as the target materials and NiCr and NiCrB alloys as counter materials. Experimental tests were performed using a pin-on-reciprocating plate tribo-tester under dry lubrication. Before performing the tests, the surface of the specimens was observed through confocal microscopy and the hardness was measured using a micro-Vickers hardness tester. The wear volume of the plate was calculated at the end of the tests using confocal microscope data, and the wear rate was quantitatively obtained based on Archard's wear law. From the results, the wear rates of the CoCrMo specimens that slid against NiCr and NiCrB are 7.69 × 10-6 ㎣/Nm and 5.26 × 10-6 ㎣/Nm, respectively. The wear rates of the CoCr specimens that slid against NiCr and NiCrB were higher than those of the CoCrMo specimens by factors of approximately 4 and 8, respectively. The CoCrMo specimens further exhibited lower friction characteristics than the CoCr specimens. The findings of this study will be useful for expanded applications of CoCr-based alloys as wear-resistant materials for various mechanical parts.

Effects of NaOCl on Neuronal Excitability and Intracellular Calcium Concentration in Rat Spinal Substantia Gelatinosa Neurons

  • Lee, Hae In;Park, A-Reum;Chun, Sang Woo
    • International Journal of Oral Biology
    • /
    • v.38 no.1
    • /
    • pp.5-12
    • /
    • 2013
  • Recent studies indicate that reactive oxygen species (ROS) can act as modulators of neuronal activity, and are critically involved in persistent pain primarily through spinal mechanisms. In this study, we investigated the effects of NaOCl, a ROS donor, on neuronal excitability and the intracellular calcium concentration ($[Ca^{2+}]_i$) in spinal substantia gelatinosa (SG) neurons. In current clamp conditions, the application of NaOCl caused a membrane depolarization, which was inhibited by pretreatment with phenyl-N-tert-buthylnitrone (PBN), a ROS scavenger. The NaOCl-induced depolarization was not blocked however by pretreatment with dithiothreitol, a sulfhydryl-reducing agent. Confocal scanning laser microscopy was used to confirm whether NaOCl increases the intracellular ROS level. ROS-induced fluorescence intensity was found to be increased during perfusion of NaOCl after the loading of 2',7'-dichlorofluorescin diacetate ($H_2DCF$-DA). NaOCl-induced depolarization was not blocked by pretreatment with external $Ca^{2+}$ free solution or by the addition of nifedifine. However, when slices were pretreated with the $Ca^{2+}$ ATPase inhibitor thapsigargin, NaOCl failed to induce membrane depolarization. In a calcium imaging technique using the $Ca^{2+}$-sensitive fluorescence dye fura-2, the $[Ca^{2+}]_i$ was found to be increased by NaOCl. These results indicate that NaOCl activates the excitability of SG neurons via the modulation of the intracellular calcium concentration, and suggest that ROS induces nociception through a central sensitization.

Influence of size and insertion depth of irrigation needle on debris extrusion and sealer penetration

  • Uzunoglu-Ozyurek, Emel;Karaaslan, Hakan;Turker, Sevinc Aktemur;Ozcelik, Bahar
    • Restorative Dentistry and Endodontics
    • /
    • v.43 no.1
    • /
    • pp.2.1-2.10
    • /
    • 2018
  • Objectives: To determine the effect of size and insertion depth of irrigation needle on the amount of apical extruded debris and the amount of penetration depth of sealer using a confocal laser scanning microscope (CLSM). Materials and Methods: Twenty maxillary premolars were assigned to 2 groups (n = 10), according to the size of needle tip, 28 G or 30 G. Buccal roots of samples were irrigated with respective needle type inserted 1 mm short of the working length (WL), while palatal roots were irrigated with respective needle type inserted 3 mm short of the WL. Prepared teeth were removed from the pre-weighed Eppendorf tubes. Canals were filled with F3 gutta-percha cone and rhodamine B dye-labeled AH 26 sealer. Teeth were transversally sectioned at 1 and 3 mm levels from the apex and observed under a CLSM. Eppendorf tubes were incubated to evaporate the irrigant and were weighed again. The difference between pre- and post-weights was calculated, and statistical evaluation was performed. Results: Inserting needles closer to the apex and using needles with wider diameters were associated with significantly more debris extrusion (p < 0.05). The position of needles and level of sections had statistically significant effects on sealer penetration depth (p < 0.05 for both). Conclusions: Following preparation, inserting narrower needles compatible with the final apical diameter of the prepared root canal at 3 mm short of WL during final irrigation might prevent debris extrusion and improve sealer penetration in the apical third.

Preparation of Agar Microcapsules and Analysis of Their Internal Structure (한천 마이크로캡슐의 제조 및 내부구조 분석)

  • Park, Chul-Wan;Lee, Shin-Young;Hur, Won
    • KSBB Journal
    • /
    • v.22 no.4
    • /
    • pp.239-243
    • /
    • 2007
  • A method of forming agar microcapsule with fibroin coating was developed in this report. The capsules were prepared from a W/O emulsion of hot agar in mineral oil and were subsequently coated by fibroin. The capsules were harvested as precipitated aggregates, which can be dispersed in an aqueous media. The diameter of the microcapsule was less than $10{\mu}m$ by microscopic observation and 90% of them were between $1.32{\mu}m\;and\;6.0{\mu}m$. The structure of the aggregates and their dispersed microspheres were investigated by scanning electron microscope. Confocal microscopy was applied to visualize the core-shell structure of the agar microcapsule with fibroin coating. Thermogravimetric analysis (TGA) measured their composition to be agar 51.2%, fibroin 13.8%, Span 80 1.4% by weight.

The Cosmeceutical Property of Antioxidant Astaxanthin is Enhanced by Encapsulation Using Glyceryl Based New Vesicle (글리세릴 베이스의 신규베지클 이용 캡슐화를 통한 항산화성 아스타잔틴의 성질 강화)

  • Kim, Dong Myung;Hong, Weon Ki;Kong, Soo Sung;Lee, Chung Hyun
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.40 no.3
    • /
    • pp.247-257
    • /
    • 2014
  • Oil-in-water nanoemulsions of astaxanthin prepared by new vesicle, glyceryl citrate/ lactate/ linoleate/ oleate, were evaluated thoroughly in terms of cosmeceutical properties such as antioxidant effect, cell viability, influence of protein related enzyme, skin penetration, skin hydration and elasticity. Antioxidant effect and cell viability of nanoemulsion of astaxanthin were evaluated by DPPH and MTT assay. Also other properties of nanoemulsions of astaxanthin were measured by proteome analysis using 2D-PAGE, confocal laser scanning microscope and in-vivo test. We were able to find that the nanoemulsion of astaxanthin is good at scavenging of radical and inhibits the degradation of dermal extracellular matrix with the down-regulation of MMPs and other proteins related to MMP expression. CLSM was adopted for observing penetration of nanoemulsion of astaxanthin and showed high effective penetration rate compared to the nanoemulsion of astaxanthin prepared by conventional lecithin. In-vivo measurement of the nanoemulsions in hydration and elasticity were conducted to 11 Korean female adults for 28 days and showed better results.

Analysis of Expression Patterns of Thymosin β4 and CD133 in Normal Stomach (정상 위 조직에서 thymosin β4와 CD133의 발현 양상 분석)

  • Ock, Mee Sun;Cha, Hee-Jae
    • Journal of Life Science
    • /
    • v.22 no.10
    • /
    • pp.1415-1419
    • /
    • 2012
  • Thymosin ${\beta}4$ ($T{\beta}4$) has been reported to be overexpressed in CD133-positive colorectal cancer stem cells. We analyzed the relationship between $T{\beta}4$ and CD133-positive stem cells in normal stomach by examining the expression patterns of $T{\beta}4$ and CD133 in normal stomach tissues by immunohistochemical staining; co-localization of $T{\beta}4$ and CD133 was studied by immunofluorescence and confocal laser-scanning microscopy. Both $T{\beta}4$ and CD133 were expressed in stomach glands and showed similar expression patterns. Immunofluorescence staining of $T{\beta}4$ and CD133 showed that the expression of $T{\beta}4$ and CD133 was co-localized. In summary, both $T{\beta}4$ and CD133 were expressed in glands of normal stomachs and expression patterns were co-localized. These data suggest that $T{\beta}4$ expression is strongly related to CD133 expression.

Cutting efficiency of apical preparation using ultrasonic tips with microprojections: confocal laser scanning microscopy study

  • Kwak, Sang-Won;Moon, Young-Mi;Yoo, Yeon-Jee;Baek, Seung-Ho;Lee, WooCheol;Kim, Hyeon-Cheol
    • Restorative Dentistry and Endodontics
    • /
    • v.39 no.4
    • /
    • pp.276-281
    • /
    • 2014
  • Objectives: The purpose of this study was to compare the cutting efficiency of a newly developed microprojection tip and a diamond-coated tip under two different engine powers. Materials and Methods: The apical 3 mm of each root was resected, and root-end preparation was performed with upward and downward pressure using one of the ultrasonic tips, KIS-1D (Obtura Spartan) or JT-5B (B&L Biotech Ltd.). The ultrasonic engine was set to power-1 or -4. Forty teeth were randomly divided into four groups: K1 (KIS-1D / Power-1), J1 (JT-5B / Power-1), K4 (KIS-1D / Power-4), and J4 (JT-5B / Power-4). The total time required for root-end preparation was recorded. All teeth were resected and the apical parts were evaluated for the number and length of cracks using a confocal scanning micrscope. The size of the root-end cavity and the width of the remaining dentin were recorded. The data were statistically analyzed using two-way analysis of variance and a Mann-Whitney test. Results: There was no significant difference in the time required between the instrument groups, but the power-4 groups showed reduced preparation time for both instrument groups (p < 0.05). The K4 and J4 groups with a power-4 showed a significantly higher crack formation and a longer crack irrespective of the instruments. There was no significant difference in the remaining dentin thickness or any of the parameters after preparation. Conclusions: Ultrasonic tips with microprojections would be an option to substitute for the conventional ultrasonic tips with a diamond coating with the same clinical efficiency.