DOI QR코드

DOI QR Code

Influence of size and insertion depth of irrigation needle on debris extrusion and sealer penetration

  • Received : 2017.09.23
  • Accepted : 2017.11.08
  • Published : 2018.02.02

Abstract

Objectives: To determine the effect of size and insertion depth of irrigation needle on the amount of apical extruded debris and the amount of penetration depth of sealer using a confocal laser scanning microscope (CLSM). Materials and Methods: Twenty maxillary premolars were assigned to 2 groups (n = 10), according to the size of needle tip, 28 G or 30 G. Buccal roots of samples were irrigated with respective needle type inserted 1 mm short of the working length (WL), while palatal roots were irrigated with respective needle type inserted 3 mm short of the WL. Prepared teeth were removed from the pre-weighed Eppendorf tubes. Canals were filled with F3 gutta-percha cone and rhodamine B dye-labeled AH 26 sealer. Teeth were transversally sectioned at 1 and 3 mm levels from the apex and observed under a CLSM. Eppendorf tubes were incubated to evaporate the irrigant and were weighed again. The difference between pre- and post-weights was calculated, and statistical evaluation was performed. Results: Inserting needles closer to the apex and using needles with wider diameters were associated with significantly more debris extrusion (p < 0.05). The position of needles and level of sections had statistically significant effects on sealer penetration depth (p < 0.05 for both). Conclusions: Following preparation, inserting narrower needles compatible with the final apical diameter of the prepared root canal at 3 mm short of WL during final irrigation might prevent debris extrusion and improve sealer penetration in the apical third.

Keywords

References

  1. Haapasalo M, Endal U, Zandi H, Coil JM. Eradication of endodontic infection by instrumentation and irrigation solutions. Endod Topics 2005;10:77-102. https://doi.org/10.1111/j.1601-1546.2005.00135.x
  2. Gulabivala K, Patel B, Evans G, Ng YL. Efects of mechanical and chemical procedures on root canal surfaces. Endod Topics 2005;10:103-122. https://doi.org/10.1111/j.1601-1546.2005.00133.x
  3. Zehnder M. Root canal irrigants. J Endod 2006;32:389-398. https://doi.org/10.1016/j.joen.2005.09.014
  4. Paque F, Balmer M, Attin T, Peters OA. Preparation of oval-shaped root canals in mandibular molars using nickel-titanium rotary instruments: a micro-computed tomography study. J Endod 2010;36:703-707. https://doi.org/10.1016/j.joen.2009.12.020
  5. Paque F, Zehnder M, De-Deus G. Microtomography-based comparison of reciprocating single-fle F2 ProTaper technique versus rotary full sequence. J Endod 2011;37:1394-1397. https://doi.org/10.1016/j.joen.2011.06.031
  6. Abou-Rass M, Piccinino MV. The efectiveness of four clinical irrigation methods on the removal of root canal debris. Oral Surg Oral Med Oral Pathol 1982;54:323-328. https://doi.org/10.1016/0030-4220(82)90103-7
  7. Carrigan PJ, Morse DR, Furst ML, Sinai IH. A scanning electron microscopic evaluation of human dentinal tubules according to age and location. J Endod 1984;10:359-363. https://doi.org/10.1016/S0099-2399(84)80155-7
  8. Gu Y, Perinpanayagam H, Kum DJ, Yoo YJ, Jeong JS, Lim SM, Chang SW, Baek SH, Zhu Q, Kum KY. Efect of diferent agitation techniques on the penetration of irrigant and sealer into dentinal tubules. Photomed Laser Surg 2017;35:71-77. https://doi.org/10.1089/pho.2016.4125
  9. Orstavik D. Endodontic flling materials. Endod Topics 2014;31:53-67. https://doi.org/10.1111/etp.12068
  10. Mamootil K, Messer HH. Penetration of dentinal tubules by endodontic sealer cements in extracted teeth and in vivo. Int Endod J 2007;40:873-881. https://doi.org/10.1111/j.1365-2591.2007.01307.x
  11. Sadr S, Golmoradizadeh A, Raoof M, Tabanfar MJ. Microleakage of single-cone gutta-percha obturation technique in combination with diferent types of sealers. Iran Endod J 2015;10:199-203.
  12. Bolles JA, He J, Svoboda KK, Schneiderman E, Glickman GN. Comparison of Vibringe, EndoActivator, and needle irrigation on sealer penetration in extracted human teeth. J Endod 2013;39:708-711. https://doi.org/10.1016/j.joen.2013.01.006
  13. Kara Tuncer A, Unal B. Comparison of sealer penetration using the EndoVac irrigation system and conventional needle root canal irrigation. J Endod 2014;40:613-617. https://doi.org/10.1016/j.joen.2013.11.017
  14. Generali L, Cavani F, Serena V, Pettenati C, Righi E, Bertoldi C. Efect of diferent irrigation systems on sealer penetration into dentinal tubules. J Endod 2017;43:652-656. https://doi.org/10.1016/j.joen.2016.12.004
  15. Peters OA. Current challenges and concepts in the preparation of root canal systems: a review. J Endod 2004;30:559-567. https://doi.org/10.1097/01.DON.0000129039.59003.9D
  16. Dutner J, Mines P, Anderson A. Irrigation trends among American Association of Endodontists members: a web-based survey. J Endod 2012;38:37-40. https://doi.org/10.1016/j.joen.2011.08.013
  17. Chow TW. Mechanical efectiveness of root canal irrigation. J Endod 1983;9:475-479. https://doi.org/10.1016/S0099-2399(83)80162-9
  18. Usman N, Baumgartner JC, Marshall JG. Infuence of instrument size on root canal debridement. J Endod 2004;30:110-112.
  19. Falk KW, Sedgley CM. The infuence of preparation size on the mechanical efcacy of root canal irrigation in vitro. J Endod 2005;31:742-745. https://doi.org/10.1097/01.don.0000158007.56170.0c
  20. Sedgley CM, Nagel AC, Hall D, Applegate B. Infuence of irrigant needle depth in removing bioluminescent bacteria inoculated into instrumented root canals using real-time imaging in vitro. Int Endod J 2005;38:97-104. https://doi.org/10.1111/j.1365-2591.2004.00906.x
  21. Khademi A, Yazdizadeh M, Feizianfard M. Determination of the minimum instrumentation size for penetration of irrigants to the apical third of root canal systems. J Endod 2006;32:417-420. https://doi.org/10.1016/j.joen.2005.11.008
  22. van der Sluis LW, Gambarini G, Wu MK, Wesselink PR. The infuence of volume, type of irrigant and fushing method on removing artifcially placed dentine debris from the apical root canal during passive ultrasonic irrigation. Int Endod J 2006;39:472-476. https://doi.org/10.1111/j.1365-2591.2006.01108.x
  23. Perez R, Neves AA, Belladonna FG, Silva EJ, Souza EM, Fidel S, Versiani MA, Lima I, Carvalho C, De-Deus G. Impact of needle insertion depth on the removal of hard-tissue debris. Int Endod J 2017;50:560-568. https://doi.org/10.1111/iej.12648
  24. Boutsioukis C, Lambrianidis T, Kastrinakis E. Irrigant fow within a prepared root canal using various fow rates: a Computational Fluid Dynamics study. Int Endod J 2009;42:144-155. https://doi.org/10.1111/j.1365-2591.2008.01503.x
  25. Munoz HR, Camacho-Cuadra K. In vivo efcacy of three diferent endodontic irrigation systems for irrigant delivery to working length of mesial canals of mandibular molars. J Endod 2012;38:445-448. https://doi.org/10.1016/j.joen.2011.12.007
  26. Aksel H, Askerbeyli S, Canbazoglu C, Serper A. Efect of needle insertion depth and apical diameter on irrigant extrusion in simulated immature permanent teeth. Braz Oral Res 2014;28:1-6.
  27. Boutsioukis C, Lambrianidis T, Verhaagen B, Versluis M, Kastrinakis E, Wesselink PR, van der Sluis LW. The efect of needle-insertion depth on the irrigant fow in the root canal: evaluation using an unsteady computational fuid dynamics model. J Endod 2010;36:1664-1668. https://doi.org/10.1016/j.joen.2010.06.023
  28. Malentacca A, Uccioli U, Zangari D, Lajolo C, Fabiani C. Efcacy and safety of various active irrigation devices when used with either positive or negative pressure: an in vitro study. J Endod 2012;38:1622-1626. https://doi.org/10.1016/j.joen.2012.09.009
  29. Psimma Z, Boutsioukis C, Kastrinakis E, Vasiliadis L. Efect of needle insertion depth and root canal curvature on irrigant extrusion ex vivo. J Endod 2013;39:521-524. https://doi.org/10.1016/j.joen.2012.12.018
  30. Myers GL, Montgomery S. A comparison of weights of debris extruded apically by conventional fling and Canal Master techniques. J Endod 1991;17:275-279. https://doi.org/10.1016/S0099-2399(06)81866-2
  31. Boutsioukis C, Gogos C, Verhaagen B, Versluis M, Kastrinakis E, Van der Sluis LW. The efect of root canal taper on the irrigant fow: evaluation using an unsteady Computational Fluid Dynamics model. Int Endod J 2010;43:909-916. https://doi.org/10.1111/j.1365-2591.2010.01767.x
  32. Silva PB, Krolow AM, Pilownic KJ, Casarin RP, Lima RK, Leonardo RT, Pappen FG. Apical extrusion of debris and irrigants using diferent irrigation needles. Braz Dent J 2016;27:192-195. https://doi.org/10.1590/0103-6440201600382
  33. Tanalp J, Gungor T. Apical extrusion of debris: a literature review of an inherent occurrence during root canal treatment. Int Endod J 2014;47:211-221. https://doi.org/10.1111/iej.12137
  34. Farook SA, Shah V, Lenouvel D, Sheikh O, Sadiq Z, Cascarini L, Webb R. Guidelines for management of sodium hypochlorite extrusion injuries. Br Dent J 2014;217:679-684. https://doi.org/10.1038/sj.bdj.2014.1099
  35. Boutsioukis C, Psimma Z, van der Sluis LW. Factors afecting irrigant extrusion during root canal irrigation: a systematic review. Int Endod J 2013;46:599-618. https://doi.org/10.1111/iej.12038
  36. Mandorah A. Efect of irrigation needle depth in smear layer removal: scanning electron microscope study. Saudi Endod J 2013;3:114-119. https://doi.org/10.4103/1658-5984.121503
  37. Tay FR, Gu LS, Schoefel GJ, Wimmer C, Susin L, Zhang K, Arun SN, Kim J, Looney SW, Pashley DH. Efect of vapor lock on root canal debridement by using a side-vented needle for positive-pressure irrigant delivery. J Endod 2010;36:745-750. https://doi.org/10.1016/j.joen.2009.11.022