한천 마이크로캡슐의 제조 및 내부구조 분석

Preparation of Agar Microcapsules and Analysis of Their Internal Structure

  • 박철완 (강원대학교 공과대학 생물공학과) ;
  • 이신영 (강원대학교 공과대학 생물공학과) ;
  • 허원 (강원대학교 공과대학 생물공학과)
  • Park, Chul-Wan (Department of Bioengineering and Technology, Kangwon National University) ;
  • Lee, Shin-Young (Department of Bioengineering and Technology, Kangwon National University) ;
  • Hur, Won (Department of Bioengineering and Technology, Kangwon National University)
  • 발행 : 2007.08.30

초록

본 연구에서는 미네랄오일에 유화제를 사용하여 한천 현탁액을 제조하고 여기에 피브로인을 첨가하여 마이크로캡슐을 제조하는 방법을 개발하였다. 먼저 한천 유화액에 첨가될 유화제의 농도를 10%로 결정하였고 피브로인을 투입하는 속도를 조절하여 피브로인으로 피막이 형성된 마이크로캡슐을 감압건조를 통하여 수분을 제거하고 에탄올 침전물로 회수하였다. 공초점 현미경으로 피브로인 피막이 형성되어 있음과 마이크로캡슐의 90%가 $1.32{\mu}m$에서 $6.0{\mu}m$사이에 존재함을 확인하였다. 에탄올 침전물 형태의 마이크로캡슐과 이들이 분산되는 것을 전자현미경으로 확인하였으며 열중량 분석을 통하여 마이크로캡슐은 중량비로 한천이 51.2%, 피브로인이 13.8%, Span 80이 1.4%로 구성되어있음을 확인하였다.

A method of forming agar microcapsule with fibroin coating was developed in this report. The capsules were prepared from a W/O emulsion of hot agar in mineral oil and were subsequently coated by fibroin. The capsules were harvested as precipitated aggregates, which can be dispersed in an aqueous media. The diameter of the microcapsule was less than $10{\mu}m$ by microscopic observation and 90% of them were between $1.32{\mu}m\;and\;6.0{\mu}m$. The structure of the aggregates and their dispersed microspheres were investigated by scanning electron microscope. Confocal microscopy was applied to visualize the core-shell structure of the agar microcapsule with fibroin coating. Thermogravimetric analysis (TGA) measured their composition to be agar 51.2%, fibroin 13.8%, Span 80 1.4% by weight.

키워드

참고문헌

  1. Linko, Y. Y., H. Kaurola, S. Uotila, and P. Linko (1986), Alcoholic fermentation of D-xylose by immobilized Pichia stipitis yeast, Biotechnol. Letters 8, 47-52 https://doi.org/10.1007/BF01044401
  2. Tonkoval, A., V. Ivauoval, E. Dobreval, M. Stefanoval, and D. Spasoval (1994), Thermostable $\alpha$-amylase production by immobilized Bacillus licheniformis cells in agar gel and on acrylonitrile/acrylamide membranes, Appl. Btotechnol. Biochem. 41, 517-522
  3. Garofalo, F. A., T. M. Chang (1991), Effects of mass transfer and reaction kinetics on serum cholesterol depletion rates of free and immobilized Pseudomonas pictorum, Appl. Biotechnol. Biocnem. 27, 75-91 https://doi.org/10.1007/BF02921517
  4. Miyazawa, K., I. Yajima, I. Kaneda, and T. Yanaki (2000), Preparation of a new soft capsule for cosmetics, J. Cosmet. Sci. 51, 239-252
  5. Chang, T. M. S. (1997), Artificial cells and bioencapsulation in bioartificial organs, Ann. N. Y. Acad. Sci. 831, 249-259
  6. Stegemann, J. P., J. J. O'Neil, and C. J. P. Mullon (2002), US patent, 6,399341
  7. Esquisabel, A., R. M. Hernandez, M. Igartua, A. R. Gascon, R. Calvo, am J. L. Pedraz (2002), Preparation am stability of agarose microcapsules containing BCG, J. Microencapsul. 19, 217-244
  8. Brissova, M., M. Petro, I. Lacik, A. C. Powers, and T. Wang (1996), Evaluation of microcapsule permeability via inverse size exclusion chromatography, Anal. Biochem. 242, 104-111 https://doi.org/10.1006/abio.1996.0435
  9. Takano, R., K. Hirabayashi, and K. Chen (1991), Preparation of soluble silk fibroin powder by hydrochloric acid hydrolysis, Soviet. Phys. Crystallogr. 60, 358-362
  10. Valluzzi, R., S. P. Gido, W. Muller, and D. L. Kaplan (1999), Orientation of silk III at the air-water interface, J. Biol. Macromolercules, 24, 237-242 https://doi.org/10.1016/S0141-8130(99)00002-1
  11. Strand, B. L., Y. A. Morch, T. Espevik, and G. Skjak-Braek (2003), Visualization of alginate-poly-L-lysine-alginate microcapsules by confocal laser scanning microscopy, Biotechnol. Bioeng. 82, 386-394 https://doi.org/10.1002/bit.10577