• Title/Summary/Keyword: conductivity ink

Search Result 51, Processing Time 0.031 seconds

Inkjet-printed narrow silver line on plastic substrate for high resolution flexible electronics

  • Chung, Seung-Jun;Hong, Yong-Taek
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.142-144
    • /
    • 2009
  • We demonstrated narrow and good aspect-ratio inkjet-printed silver lines with multi-time over-printing methods. By using this strategy, narrow silver lines were obtained with 200 nm thickness and their width and gap between printed lines of uniform narrow silver lines were 30 ${\mu}m$ and 17 ${\mu}m$, respectively. It also had good conductivity, sheet resistacne of 0.36 ${\Omega}/{\square}$ and specific resistance of $8{\mu}{\Omega}{\cdot}cm$. In current stress test, narrow silver line with 30 ${\mu}m$ width was able to a current flow up to 50 mA (2.1A/$cm^2$). Using surface treatment on poly-arylate substrate with $UVO_3$, we obtained clean-edge narrow line without any edge waviness.

  • PDF

Fabrication of Poly(3,4-ethylenedioxythiopene) Patterns using Vapor Phase Polymerization

  • Jo, Bo-Ram;Seong, Myeong-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.265.2-265.2
    • /
    • 2013
  • We fabricate poly(3,4-ethylenedioxythiopene patterns using liquid-bridge-mediated nanotransfer (LB-nTM) printing via vapor phase polymerization (VPP). LB-nTM printing method can simultaneously enable the synthesis, alignment and patterning of the nanowires from molecular ink solutions. Two- or three-dimensional complex structures of VPP-PEDOT were directly fabricated over a large area using many types of molecular inks. VPP method is a versatile technique that can be used to obtain highly conducting coatings of conjugated polymer on both conducting and non-conducting substrates. The PEDOT patterns has analyzed crystallinity from X-ray diffraction pattern and select-area diffraction patterns. In addition, the PEDOT pattern has high conductivity compared other conducting polymers.

  • PDF

디지털 프린팅 용액 공정 소재 개발 동향

  • O, Seok-Heon;Son, Won-Il;Park, Seon-Jin;Kim, Ui-Deok;Baek, Chung-Hun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.19.2-19.2
    • /
    • 2010
  • Printed electronics using printing process has broadened in all respects such as electrics (lighting, batteries, solar cells etc) as well as electronics (OLED, LCD, E-paper, transistor etc). Copper is considered to be a promising alternative to silver for printed electronics, due to very high conductivity at a low price. However, Copper is easily oxidized, and its oxide is non-conductive. This is the highest hurdle for making copper inks, since the heat and humidity that occurs during ink making and printing simply accelerates the oxidation process. A variety of chemical treatments including organic capping agents and metallic coating have been used to slow this oxidation. We have established synthetic conditions of copper nanoparticles (CuNPs) which are resistant to oxidation and average diameter of 20 to 50nm. Specific resistivity should be less than $4\;{\mu}{\Omega}{\cdot}cm$ when sintered at lower temperature than $250^{\circ}C$ to be able to apply to conductive patterns of FPCBs using ink-jet printing. Through this study, the parameters to control average diameter of CuNPs were found to be the introduction of additive agent, the feeding rate of reducing agent, and reaction temperature. The CuNPs with various average diameters (58, 40, 26, 20nm) could be synthesized by controlling these parameters. The dispersed solution of CuNPs with an average size of 20 nm was made with nonpolar solvent containing 3 wt% of binder, and then coated onto glass substrate. After sintering the coated substrates at $250^{\circ}C$ for 30 minutes in nitrogen atmosphere, metallic copper film resulted in a specific resistivity of $4.2\;{\mu}{\Omega}{\cdot}cm$.

  • PDF

Investigation of Conductive Pattern Line for Direct Digital Printing (디지털 프린팅을 위한 전도성 배선에 관한 연구)

  • Kim, Yong-Sik;Seo, Shang-Hoon;Lee, Ro-Woon;Kim, Tae-Hoon;Park, Jae-Chan;Kim, Tae-Gu;Jeong, Kyoung-Jin;Yun, Kwan-Soo;Park, Sung-Jun;Joung, Jae-Woo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.502-502
    • /
    • 2007
  • Current thin film process using memory device fabrication process use expensive processes such as manufacturing of photo mask, coating of photo resist, exposure, development, and etching. However, direct printing technology has the merits about simple and cost effective processes because inks are directly injective without mask. And also, this technology has the advantage about fabrication of fine pattern line on various substrates such as PCB, FCPB, glass, polymer and so on. In this work, we have fabricated the fine and thick metal pattern line for the electronic circuit board using metal ink contains Ag nano-particles. Metal lines are fabricated by two types of printing methods. One is a conventional printing method which is able to quick fabrication of fine pattern line, but has various difficulties about thick and high resolution DPI(Dot per Inch) pattern lines because of bulge and piling up phenomenon. Another(Second) methods is sequential printing method which has a various merits of fabrication for fine, thick and high resolution pattern lines without bulge. In this work, conductivities of metal pattern line are investigated with respect to printing methods and pattern thickness. As a result, conductivity of thick pattern is about several un.

  • PDF

Investigation on Microstructure and Electrical Properties of Silver Conductive Features Using a Powder Composed of Silver nanoparticles and Nanoplatelets (은 나노입자-나노플레이트 혼합 분말로 형성된 은 전도성 배선의 미세조직 및 전기적 특성 연구)

  • Goo, Yong-Sung;Choa, Yong-Ho;Hwangbo, Young;Lee, Young-In
    • Journal of Powder Materials
    • /
    • v.23 no.5
    • /
    • pp.358-363
    • /
    • 2016
  • Noncontact direct-printed conductive silver patterns with an enhanced electrical resistivity are fabricated using a silver ink with a mixture of silver nanoparticles and nanoplates. The microstructure and electrical resistivity of the silver pattern are systematically investigated as a function of the mixing ratio of the nanoparticles and nanoplates. The pattern, which is fabricated using a mixture with a mixing ratio of 3(nanoparticles):7(nanoplates) and sintered at $200^{\circ}C$ shows a highly dense and well-sintered microstructure and has a resistivity of $7.60{\mu}{\Omega}{\cdot}cm$. This originates a mutual synergistic effect through a combination of the sinterability of the nanoparticles and the packing ability of the nanoplates. This is a conductive material that can be used to fabricate noncontact direct-printed conductive patterns with excellent electrical conductivity for various flexible electronics applications, including solar cells, displays, RFIDs, and sensors.

Electrical Properties of Carbon Black Composites for Flexible Fiber Heating Element (유연한 섬유상 발열체용 카본블랙 복합소재의 전기적 특성)

  • Park, Ji-Yong;Lee, Jong-Dae
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.3
    • /
    • pp.405-411
    • /
    • 2015
  • Carbon composites for flexible fiber heating element were examined to improve the electrical conductivity in this study. Carbon composites using carbon black, denka black, super-c, super-p with/without CNF or dispersant such as BCS03 and Sikament-nn were prepared. Carbon composite slurry was coated on plane film and yarns(cotton, polyester) and the performances of prepared heating materials were investigated by checking electrical surface resistance, adhesion strength. The plane heating element using carbon black under natural drying condition($25^{\circ}C$) had better physical properties such as surface resistance(185.3 Ohm/sq) and adhesion strength(above 90%) than those of other carbon composite heating elements. From these results, polyester heating element coated by carbon black showed better electrical line resistance(33.2 kOhm/cm) than cotton heating element. Then, it was found that polyester heating element coated by carbon black with CNF(3 wt%) and BCS03(1 wt%) appeared best properties(0.604 kOhm/cm).

Printing Technologies for the Gate and Source/Drain Electrodes of OTFTs

  • Lee, Myung-Won;Lee, Mi-Young;Song, Chung-Kun
    • Journal of Information Display
    • /
    • v.10 no.3
    • /
    • pp.131-136
    • /
    • 2009
  • This is a report on the fabrication of a flexible OTFT backplane for electrophoretic display (EPD) using a printing technology. A practical printing technology for a polycarbonate substrate was developed by combining the conventional screen and inkjet printing technologies with the wet etching and oxygen plasma processes. For the gate electrode, the screen printing technology with Ag ink was developed to define the minimum line width of ${\sim}5{\mu}m$ and the thickness of ${\sim}70nm$ with the resistivity of ${\sim}10^{-6}{\Omega}{\cdot}cm$, which are suitable for displays with SVGA resolution. For the source and drain (S/D) electrodes, PEDOT:PSS, whose conductivity was drastically enhanced to 450 S/cm by adding 10 wt% glycerol, was adopted. In addition, the modified PEDOT:PSS could be neatly confined in the specific S/D electrode area that had been pretreated with oxygen. The OTFTs that made use of the developed printing technology produced a mobility of ${\sim}0.13cm^2/Vs.ec$ and an on/off current ratio of ${\sim}10^6$, which are comparable to those using thermally evaporated Au for the S/D electrode.

Experimental Study on the Unsaturated Characteristics of Dredging Soils at Saemangeum Area (새만금지역 준설토의 불포화 특성에 대한 실험적 연구)

  • Song, Young-Suk;You, Seung-Kyong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.10 no.3
    • /
    • pp.25-32
    • /
    • 2011
  • The matric suction and volumetric water content of dredging soils obtained from Saemangeum area were measured by the automated Soil-Water Characteristic Curve (SWCC) apparatus under both drying and wetting conditions. Based on the test result, SWCCs of the dredging soils were estimated by the van Genuchten(1980) model. The matric suction of drying process is larger than that of wetting process at a same effective degree of saturation. The suction stresses for various matirc suctions were estimated using Lu and Likos(2006) model and the Suction Stress Characteristic Curves (SSCC) were predicted using the independent parameter of SWCC. The suction stress of drying path was increased and decreased, while the suction stress of wetting path was continuously decreased with increasing the effective degree. Also, the suction stress of drying path is larger than that of wetting path at a same effective degree of saturation. The Hydraulic Conductivity Function(HCF) was also predicted by the van Genuchten(1980) model. The hydraulic conductivity was increased with increasing the volumetric water content. The hydraulic conductivity of drying path is larger than that of wetting path at a same matric suction. According to the results of SWCCs and SSCCs, the hysteresis phenomenon of suction stress or matric suction during both drying and wetting paths was occurred. The main reason of hysteresis phenomenon is a ink bottle effect of water among soil particles.

Alternative Sintering Technology of Printed Nanoparticles for Roll-to-Roll Process (롤투롤 인쇄공정 적용을 위한 차세대 나노입자 소결 기술)

  • Lee, Eun Kyung;Eun, Kyoungtae;Ahn, Young Seok;Kim, Yong Taek;Chon, Min-Woo;Choa, Sung-Hoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.4
    • /
    • pp.15-24
    • /
    • 2014
  • Recently, a variety of printing technologies, including ink jet, gravure, and roll-to-roll (R2R) printing, has generated intensive interest in the application of flexible and wearable electronic devices. However, the actual use of printing technique is much limited because the sintering process of the printed nanoparticle inks remains as a huge practical drawback. In the fabrication of the conductive metal film, a post-sintering process is required to achieve high conductivity of the printed film. The conventional thermal sintering takes considerable sintering times, and requires high temperatures. For application to flexible devices, the sintering temperature should be as low as possible to minimize the damage of polymer substrate. Several alternative sintering methods were suggested, such as laser, halogen lamp, infrared, plasma, ohmic, microwave, and etc. Eventually, the new sintering technique should be applicable to large area, R2R, and polymer substrate as well as low cost. This article reviews progress in recent technologies for several sintering methods. The advantages and disadvantages of each technology will be reviewed. Several issues for the application in R2R process are discussed.

Fabrication of Strain Sensor Based on Graphene/Polyurethane Nanoweb and Respiration Measurement (그래핀/폴리우레탄 나노웹 기반의 스트레인센서 제작 및 호흡측정)

  • Lee, Hyocheol;Cho, Hyeon-seon;Lee, Eugene;Jang, Eunji;Cho, Gilsoo
    • Science of Emotion and Sensibility
    • /
    • v.22 no.1
    • /
    • pp.15-22
    • /
    • 2019
  • The purpose of this study is to develop a strain sensor based on a nanoweb by applying electrical conductivity to a polyurethane nanoweb through the use of Graphene. For this purpose, 1% Graphene ink was pour-coated on a polyurethane nanoweb and post-treated with PDMS (Polydimethylsiloxane) to complete a wearable strain sensor. The surface characteristics of the specimens were evaluated using a field emission scanning electron microscope (FE-SEM) to check whether the conductive material was well coated on the surface of the specimen. Electrical properties of the specimens were measured by using a multimeter to measure the linear resistance of the specimen and comparing how the line resistance changes when 5% and 10% of the specimens are tensioned, respectively. In order to evaluate the performance of the specimen, the gauge factor was obtained. The evaluation of the clothing was performed by attaching the completed strain sensor to the dummy and measuring the respiration signal according to the tension using MP150 (Biopac system Inc., USA) and Acqknowledge (ver. 4.2, Biopac system Inc., U.S.A.). As a result of the evaluation of the surface characteristics, it was confirmed that all the conductive nanoweb specimen were uniformly coated with the Graphen ink. As a result of measuring the resistance value according to the tensile strength, the specimen G, which was treated with just graphene had the lowest resistance value, the specimen G-H had the highest resistance value, and the change of the line resistance value of the specimen G and the specimen G-H is increased to 5% It is found that it increases steadily. Unlike the resistance value results, specimen G showed a higher gauge rate than specimen G-H. As a result of evaluation of the actual clothes, the strain sensor made using the specimen G-H measured the stable peak value and obtained a signal of good quality. Therefore, we confirmed that the polyurethane nanoweb treated with Graphene ink plays a role as a breathing sensor.