Browse > Article
http://dx.doi.org/10.4150/KPMI.2016.23.5.358

Investigation on Microstructure and Electrical Properties of Silver Conductive Features Using a Powder Composed of Silver nanoparticles and Nanoplatelets  

Goo, Yong-Sung (Department of Fusion Chemical Engineering, Hanyang University)
Choa, Yong-Ho (Department of Fusion Chemical Engineering, Hanyang University)
Hwangbo, Young (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Lee, Young-In (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Publication Information
Journal of Powder Materials / v.23, no.5, 2016 , pp. 358-363 More about this Journal
Abstract
Noncontact direct-printed conductive silver patterns with an enhanced electrical resistivity are fabricated using a silver ink with a mixture of silver nanoparticles and nanoplates. The microstructure and electrical resistivity of the silver pattern are systematically investigated as a function of the mixing ratio of the nanoparticles and nanoplates. The pattern, which is fabricated using a mixture with a mixing ratio of 3(nanoparticles):7(nanoplates) and sintered at $200^{\circ}C$ shows a highly dense and well-sintered microstructure and has a resistivity of $7.60{\mu}{\Omega}{\cdot}cm$. This originates a mutual synergistic effect through a combination of the sinterability of the nanoparticles and the packing ability of the nanoplates. This is a conductive material that can be used to fabricate noncontact direct-printed conductive patterns with excellent electrical conductivity for various flexible electronics applications, including solar cells, displays, RFIDs, and sensors.
Keywords
silver; nanoparticle; nanoplatelet; conductive feature; direct printing;
Citations & Related Records
연도 인용수 순위
  • Reference
1 C. C. Ho, J. W. Evans and P. K. Wright: J. Micromech. Microeng., 20 (2010) 104009.   DOI
2 J. Puetz and M. A. Aegeter: Thin Solid Films, 516 (2008) 4495.   DOI
3 C. F. Huebner, J. B. Carroll, D. D. Evanoff, Y. Ying, B. J. Stevenson, J. R. Lawrence, J. M. Houchins, A. L. Foguth, J. Sperryb and S. H. Foulge: J. Mater. Chem., 18 (2008) 4942.   DOI
4 M. Singh, H. M. Haverinen, P. Dhagat and G. E. Jabbour: Adv. Mater., 22 (2010) 673.   DOI
5 H. Minemawari, T. Yamada, H. Matsui, J. Tsutsumi, S. Haas, R. Chiba, R. Kumail and T. Hasegawa: Nature, 475 (2011) 364.   DOI
6 M. Vaseem, K. M. Lee, A.-R. Hong and Y.-B. Hahn: ACS Appl. Mater. Interfaces, 4 (2012) 3300.   DOI
7 Y. Lee, J. Choi, K. J. Lee, N. E. Stott and D. Kim: Nanotechnology, 19 (2008) 415604.   DOI
8 M. Grouchko, A. Kamyshny and S. Magdassi: J. Mater. Chem., 19 (2009) 3057.   DOI
9 B. Y. Ahn, E. B. Duoss, M. J. Motala, X. Guo, S.-I. Park, Y. Xiong, J. Yoon, R. G. Nuzzo, J. A. Rogers and J. A. Lewis: Science, 323 (2009) 1590.   DOI
10 J. R. Greer and R. A. Street: Acta Mater., 55 (2007) 6345.   DOI
11 Y.-I. Lee, S. Kim, S.-B. Jung, N. V. Myung and Y.-H. Choa: ACS Appl. Mater. Interfaces, 5 (2013) 5908.   DOI
12 C. Yang, C. P. Wong and M. M. F. Yuen: J. Phys. Chem. C, 1 (2013) 4052.
13 C.-L. Lee, K.-C. Chang and C.-M. Syu: Colloids Surf., A, 381 (2011) 85.   DOI
14 Y. Sun and Y. Xia: Adv. Mater., 15 (2003) 695.   DOI
15 J. Goebl, Q. Zhang, L. He and Y. Yin: Angew. Chem. Int. Ed., 51 (2012) 552.   DOI
16 R.-Z. Li, A. Hu, D. Bridges, T. Zhang, K. D. Oakes, R. Peng, U. Tumuluri, Z. Wu and Z. Feng: Nanoscale, 7 (2015) 7368.   DOI
17 Y.-L. Tai and Z.-G. Yang: J. Mater. Chem., 21 (2011) 5938.   DOI
18 H.-H. Lee, K.-S. Chou, K.-C. Huang: Nanotechnology, 16 (2005) 2436.   DOI
19 J. R. Greer and R. A. Street: Acta Mater., 55 (2007) 6345.   DOI
20 Z. Zhang, X. Zhang, Z. Xin, M. Deng, Y. Wen and Y. Song: Nanotechnology, 22 (2011) 425601.   DOI