DOI QR코드

DOI QR Code

Alternative Sintering Technology of Printed Nanoparticles for Roll-to-Roll Process

롤투롤 인쇄공정 적용을 위한 차세대 나노입자 소결 기술

  • Lee, Eun Kyung (Graduate School of NID Fusion Technology, Seoul National University of Science and Technology) ;
  • Eun, Kyoungtae (Graduate School of NID Fusion Technology, Seoul National University of Science and Technology) ;
  • Ahn, Young Seok (Graduate School of NID Fusion Technology, Seoul National University of Science and Technology) ;
  • Kim, Yong Taek (Graduate School of NID Fusion Technology, Seoul National University of Science and Technology) ;
  • Chon, Min-Woo (Graduate School of Mechanics and Design, Kookmin University) ;
  • Choa, Sung-Hoon (Graduate School of NID Fusion Technology, Seoul National University of Science and Technology)
  • 이은경 (서울과학기술대학교 NID 융합기술대학원) ;
  • 은경태 (서울과학기술대학교 NID 융합기술대학원) ;
  • 안영석 (서울과학기술대학교 NID 융합기술대학원) ;
  • 김용택 (서울과학기술대학교 NID 융합기술대학원) ;
  • 천민우 (국민대학교 기계설계대학원) ;
  • 좌성훈 (서울과학기술대학교 NID 융합기술대학원)
  • Received : 2014.11.10
  • Accepted : 2014.12.12
  • Published : 2014.12.30

Abstract

Recently, a variety of printing technologies, including ink jet, gravure, and roll-to-roll (R2R) printing, has generated intensive interest in the application of flexible and wearable electronic devices. However, the actual use of printing technique is much limited because the sintering process of the printed nanoparticle inks remains as a huge practical drawback. In the fabrication of the conductive metal film, a post-sintering process is required to achieve high conductivity of the printed film. The conventional thermal sintering takes considerable sintering times, and requires high temperatures. For application to flexible devices, the sintering temperature should be as low as possible to minimize the damage of polymer substrate. Several alternative sintering methods were suggested, such as laser, halogen lamp, infrared, plasma, ohmic, microwave, and etc. Eventually, the new sintering technique should be applicable to large area, R2R, and polymer substrate as well as low cost. This article reviews progress in recent technologies for several sintering methods. The advantages and disadvantages of each technology will be reviewed. Several issues for the application in R2R process are discussed.

Keywords

References

  1. V. Subramanian, J. M. J. Frechet, P. C. Chang, D. C. Huang, J. B. Lee, S. E. Molesa, A. R. Murphy, D. R. Redinger and S. K. Volkman, "Progress toward development of all-printed RFID tags: Materials, processes and devices", Proc. IEEE, 93(7), 1330 (2005). https://doi.org/10.1109/JPROC.2005.850305
  2. S. -J. Hong, J. -W. Kim, C. J. Han, Y. -S. Kim and T. -W. Hong, "Trends on Technology of Eco-friendly Metal and Ceramic Nanoparticle Inks for Direct Printing", J. Miroelectron. Packag. Soc., 17(2), 1 (2010).
  3. K. Woo, C. Bae, Y. Jeong, D. Kim and J. Moon, "Inkjet-printed Cu source/drain electrodes for solution-deposited thin film transistors", J. Mater. Chem., 20, 3877 (2010). https://doi.org/10.1039/c000162g
  4. Y. M. Shin, S. -S. Chee and J. -H. Lee, "Trends on Synthesis of Cu Nanoparticles by a Wet Reduction Method", J. Microelectron. Packag. Soc., 20(3), 11 (2013). https://doi.org/10.6117/kmeps.2013.20.3.011
  5. M. A. M. Leenen, V. Arning, H. Thiem, J. Steiger and R. Anselmann, "Printable Electronics: Flexibility for the Future", Phys. Status Solidi A, 206(4), 588 (2009). https://doi.org/10.1002/pssa.200824428
  6. A. L. Dearden, P. J. Smith, D. Y. Shin, N. Reis, B. Derby and P. O'Brien, "A low curing temperature silver ink for use in ink-jet printing and subsequent production of conductive tracks", Macromol. Rapid Commun., 26(4), 315 (2005). https://doi.org/10.1002/marc.200400445
  7. J. Perelaer, P. J. Smith, D. Mager, D. Soltman, S. K. Volkman, V. Subramanian, J. G. Korvink and U. S. Schubert, "Printed electronics: The challenges involved in printing devices, interconnects and contacts based on inorganic materials", J. Mater. Chem. 20, 8446 (2010). https://doi.org/10.1039/c0jm00264j
  8. M. Jose-Yacaman, C. Gutierrez-Wing, M. Miki, D. -Q. Yang, K. N. Piyakis and E. Sacher, "Surface diffusion and coalescence of mobile metal nanoparticles", J. Phys. Chem. B, 109(19), 9703 (2005). https://doi.org/10.1021/jp0509459
  9. D. Huang, F. Liao, S. Molesa, D. Redinger and V. Subramanian, "Plastic- compatible low resistance printable gold nanoparticle conductors for flexible electronics", J. Electrochem. Soc., 150(7), G412 (2003). https://doi.org/10.1149/1.1582466
  10. J. Perelaer, A. W. M. de Laat, C. E. Hendriks and U. S. Schubert, "Inkjet-printed silver tracks: low temperature curing and thermal stability investigation", J. Mater. Chem., 18, 3209 (2008). https://doi.org/10.1039/b720032c
  11. S. H Ko, H. Pan, Daeho Lee, Costas P. Grigoropoulos and H. K. Park, "Nanoparticle selective laser sintering processing for a flexible display fabrication", J. Appl. Phys., 49(5S1), 05EC03 (2010).
  12. N. Guo and M. C. Leu, "Effect of different graphite materials on the electrical conductivity and flexural strength of bipolar plates fabricated using selective laser sintering", International Journal of Hydrogen Energy, 37(4), 3558 (2012). https://doi.org/10.1016/j.ijhydene.2011.11.058
  13. G. Yaron and L. D. Hess, "Application of laser annealing techniques to increase channel mobility in silicon on sapphire transistors", Appl. Phys. Lett., 36(3), 220 (1980). https://doi.org/10.1063/1.91432
  14. M. Joo, B. Lee, S. Jeong and M. Lee, "Comparative studies on thermal and laser sintering for highly conductive Cu films printable on plastic substrate", Thin Solid Films, 520(7), 2878 (2012). https://doi.org/10.1016/j.tsf.2011.11.078
  15. S. H. Ko, H. Pan and C. P. Grigoropoulos, "Air stable high resolution organic transistors by selective laser sintering of ink-jet printed metal nanoparticles", Appl. Phys. Lett., 90, 141103 (2007). https://doi.org/10.1063/1.2719162
  16. L. Schade, S. Franzka, S. Hardt, H. Wiggers and N. Hartmann, "Sintering of thin titanium dioxide nanoparticle films via photothermal processing with ultraviolet continuous-wave lasers", Appl. Surf. Sci., 278, 336 (2013). https://doi.org/10.1016/j.apsusc.2012.11.077
  17. A. V. Shyichuk, J. R. White, I. H. Craig and I. D. Syrotynska, "Comparison of UV-degradation depth-profiles in polyethylene, polypropylene and an ethylene-propylene copolymer", Polymer Degradation and Stability, 88(3), 415 (2005). https://doi.org/10.1016/j.polymdegradstab.2004.12.006
  18. J. S. Kang, J. Ryu, H. S. Kim and H. T. Hahn, "Sintering of inkjet-printed silver nanoparticles at room temperature using intense pulsed light", J. Electron. Mater., 40(11), 2268 (2011). https://doi.org/10.1007/s11664-011-1711-0
  19. D. J. Lee, S. H. Park, S. Jang, H. S. Kim, J. H. Oh and Y. W. Song, "Pulsed light sintering characteristics of inkjet-printed nanosilver films on a polmer substrate", J. Micromech. Microeng., 21(12), 125023 (2011). https://doi.org/10.1088/0960-1317/21/12/125023
  20. S. -H. Park, S. Jang, D. -J. Lee, J. Oh and H. -S, Kim, "Two-step flash light sintering process for crack-free inkjet-printed Ag films", J. Micromech. Microeng., 23(1), 015013 (2013). https://doi.org/10.1088/0960-1317/23/1/015013
  21. D. J. Lee and J. H. Oh, "Inkjet printing of conductive Ag lines and their electrical and mechanical characterization", Thin Solid Films, 518(22), 6352 (2010). https://doi.org/10.1016/j.tsf.2010.02.049
  22. H. -S. Kim, S. R. Dhage, D. -E. Shim and H. T. Hahn, "Intense pulsed light sintering of copper nanoink for printed electronics", Appl. Phys. A, 97(4), 791 (2009). https://doi.org/10.1007/s00339-009-5360-6
  23. J. Ryu, H. -S. Kim and H. T. Hahn, "Reactive sintering of copper nanoparticles using intense pulsed light for printed electronics", J. Electron. Mater., 40(1), 42 (2011). https://doi.org/10.1007/s11664-010-1384-0
  24. D. Tobjork, H. Aarnio, P. Pulkkinen, R. Bollstrom, A. Maattanen, P. Ihalainen, T. Makela, J. Peltonen, M. Toivakka, H. Tenhu and R. Osterbacka, "IR-sintering of ink-jet printed metal-nanoparticles on paper", Thin Solid Films, 520(7), 2949 (2012). https://doi.org/10.1016/j.tsf.2011.10.017
  25. M. Cherrington, T. C. Claypole, D. Deganello, I. Mabbett, T. Watsonb and D. Worsley, "Ultrafast near-infrared sintering of a slot-die coated nano-silver conducting ink", J. Mater. Chem., 21, 7562 (2011). https://doi.org/10.1039/c1jm10630a
  26. I. Reinhold, C. E. Hendriks, R. Eckardt, J. M. Kranenburg, J. Perelaer, R. R. Baumannbd and U. S. Schubert, "Argon plasma sintering of inkjet printed silver tracks on polymer substrates", J. Mater. Chem., 19, 3384 (2009). https://doi.org/10.1039/b823329b
  27. S. Wcunscher, S. Stumpf, A. Teichler, O. Pabst, J. Perelaer, E. Beckertd and U. S. Schubert, "Localized atmospheric plasma sintering of inkjet printed silver nanoparticles", J. Mater. Chem., 22, 24569 (2012). https://doi.org/10.1039/c2jm35586h
  28. S. Wunscher, S. Stumpf, J. Perelaer and U. S. Schubert "Towards single-pass plasma sintering: temperature influence of atmospheric pressure plasma sintering of silver nanoparticle ink", J. Mater. Chem. C, 2, 1642 (2014). https://doi.org/10.1039/c3tc32120g
  29. D. A. Roberson, R. B. Wicker and E. MacDonald, "Ohmic Curing of Printed Silver Conductive Traces" J. Electron. Mater., 41(9), 2553 (2012). https://doi.org/10.1007/s11664-012-2140-4
  30. M. L. Allen, M. Aronniemi, T. Mattila, A. Alastalo, K. Ojanpera, M. Suhonen and H. Seppa, "Electrical sintering of nanoparticle structures", Nanotechnology, 19(17), 175201 (2008). https://doi.org/10.1088/0957-4484/19/17/175201
  31. M. L. Allen, A. Alastalo, M. Suhonen, T. Mattila, J. Leppaniemi and H. Seppa, "Contactless Electrical Sintering of Silver Nanoparticles on Flexible Substrates", IEEE Trans. Microwave Theory and Techniques, 59(5), 1419 (2011). https://doi.org/10.1109/TMTT.2011.2123910

Cited by

  1. Barium Titanate Nanoparticles Formed by Chlorine-Free Ambient Condition Sol Process Using Tetrabutylammonium Hydroxide vol.2016, 2016, https://doi.org/10.1155/2016/8205864
  2. A Study on the Agglomeration of BaTiO3Nanoparticles with Differential Synthesis Route vol.22, pp.2, 2015, https://doi.org/10.6117/kmeps.2015.22.2.033
  3. Dielectric properties of BaTiO3 nanocrystals synthesized by ambient-condition-sol process at low temperatures vol.57, pp.2, 2014, https://doi.org/10.1007/s43207-020-00015-2
  4. IPL 처리를 통한 고분자 나노구조의 기계적 특성 향상 연구 vol.27, pp.4, 2014, https://doi.org/10.6117/kmeps.2020.27.4.113