DOI QR코드

DOI QR Code

Experimental Study on the Unsaturated Characteristics of Dredging Soils at Saemangeum Area

새만금지역 준설토의 불포화 특성에 대한 실험적 연구

  • Song, Young-Suk (Geologic Environment Division, Korea Institute of Geoscience and Mineral Resources) ;
  • You, Seung-Kyong (Department of Civil Engineering, Myongji College)
  • 송영석 (한국지질자원연구원 지구환경연구본부) ;
  • 유승경 (명지전문대학 토목과)
  • Received : 2011.08.07
  • Accepted : 2011.09.12
  • Published : 2011.09.30

Abstract

The matric suction and volumetric water content of dredging soils obtained from Saemangeum area were measured by the automated Soil-Water Characteristic Curve (SWCC) apparatus under both drying and wetting conditions. Based on the test result, SWCCs of the dredging soils were estimated by the van Genuchten(1980) model. The matric suction of drying process is larger than that of wetting process at a same effective degree of saturation. The suction stresses for various matirc suctions were estimated using Lu and Likos(2006) model and the Suction Stress Characteristic Curves (SSCC) were predicted using the independent parameter of SWCC. The suction stress of drying path was increased and decreased, while the suction stress of wetting path was continuously decreased with increasing the effective degree. Also, the suction stress of drying path is larger than that of wetting path at a same effective degree of saturation. The Hydraulic Conductivity Function(HCF) was also predicted by the van Genuchten(1980) model. The hydraulic conductivity was increased with increasing the volumetric water content. The hydraulic conductivity of drying path is larger than that of wetting path at a same matric suction. According to the results of SWCCs and SSCCs, the hysteresis phenomenon of suction stress or matric suction during both drying and wetting paths was occurred. The main reason of hysteresis phenomenon is a ink bottle effect of water among soil particles.

본 연구에서는 자동 흙-함수특성곡선 시험장치를 이용하여 새만금지역에서 채취한 준설토의 모관흡수력과 체적함수비를 측정하였다. 측정결과를 토대로 Van Genuchten(1980)의 방법을 이용하여 흙-함수특성곡선(SWCC)을 산정하였다. 동일한 유효포화도에서 건조과정의 모관흡수력은 습윤과정의 모관흡수력보다 크게 나타났다. Lu and Likos(2006)의 방법을 이용하여 모관흡수력에 따른 흡입응력을 산정하고, 흙-함수특성곡선(SWCC)의 불포화 관련계수를 토대로 흡입응력특성곡선(SSCC)을 예측하였다. 건조과정의 흡입응력은 유효포화도가 증가함에 따라 증가하다가 감소하지만 습윤과정의 흡입응력은 유효포화도가 증가함에 따라 지속적으로 감소한다. 또한 동일한 유효포화도에서 건조과정의 흡입응력은 습윤과정의 흡입응력보다 크게 나타났다. 한편 van Genuchten(1980)의 방법을 이용하여 투수계수함수(HCF)를 예측하였다. 체적함수비가 증가함에 따라 불포화 투수계수는 증가하며, 동일한 모관흡수력에서 건조과정의 투수계수가 습윤과정의 투수계수보다 크게 나타났다. 흙-함수특성곡선(SWCC)과 흡입응력특성곡선(SSCC)의 산정결과에 의하면 건조 및 습윤과정에서 흡입응력 혹은 모관흡수력에 대한 이력현상이 발생되었다. 이러한 이력현상은 흙입자 사이의 간극수로 인한 잉크병 효과에 의한 것이다.

Keywords

References

  1. Bishop, A. W. (1954), "The use of pore water coefficients in practice", Geotechnique, Vol.4, pp.148-152. https://doi.org/10.1680/geot.1954.4.4.148
  2. Bishop, A. W. (1959), "The principle of effective stress", Teknisk Ukeblad I Samarbeide Med Teknikk, Vol.106, No.39, pp.859-863.
  3. Chae, J. G., Kim, B. S., Park, S. W. and Kato, S. (2010), "Effect of suction on unconfined compressive strength in partly saturated soils", Journal of Civil Engineering, KSCE, Vol.14, No.3, pp.281-290. https://doi.org/10.1007/s12205-010-0281-7
  4. Fredlund, D. G. and Morgenstern, N. R. (1977), "Stress Variables for Unsaturated Soils", Jour. Geotech. Eng. Div., ASCE, Vol.103, pp.447-466.
  5. Fredlund, D. G. and Rahardjo, H. (1993), Soil mechanics for unsaturated soils, John Wiley and Sons Inc., New York.
  6. Fredlund, D. G., Morgenstern, N. R. and Widger, D. A. (1978), "The shear strength of unsaturated soils", Canadian Geotechnical Journal, Vol.15, No.3, pp.313-321. https://doi.org/10.1139/t78-029
  7. Hilf, J. W. (1956), An investigation of pore water pressure in compacted cohesive soils, Technical Memorandum No.654, U.S. Department of the interior, Bureau of Reclamation, Design and Construction Division, Denver, Colorado.
  8. Jennings, J. E. B. and Burland, J. B. (1962), "Limitation to the use of effective stresses in unsaturated soils", Geotechnique, Vol.12, pp.125-144. https://doi.org/10.1680/geot.1962.12.2.125
  9. Kim, C. K and Kim, T. H. (2010), "Behavior of unsaturated weathered residual granite soil with initial water contents", Engineering Geology, Vol.113, pp.1-10. https://doi.org/10.1016/j.enggeo.2009.09.004
  10. Lu, N. and Likos, W. J. (2004), Unsaturated soil mechanics, John Wiley and Sons Inc., New York.
  11. Lu, N., Godt, J. W. and Wu, D. T. (2010), "A closed-form equation for effective stress in unsaturated soil", Water Resources Research, Vol.46, No.W05515, doi:10.1029/2009WR 008646.
  12. Lu, N. and Likos, W. J. (2006), "Suction stress characteristic curve for unsaturated soil", Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol.132, No.2, pp.131-142. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:2(131)
  13. Lu, N., Kim, T. H., Sture, S. and Likos, W. J. (2009), "Tensile strength of unsaturated sand", Journal of Engineering Mechanics, ASCE, Vol.135, No.12, pp.1410-1419. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000054
  14. Lu, N., Wu, B. and Tan, C. P. (2007), "Tensile strength characteristics of unsaturated soils", Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol.133, No.2, pp.144-154. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:2(144)
  15. Mualem, Y. (1976), "A new model for predicting the hydraulic conductivity of unsaturated porous media", Water Resources Research, Vol.12, No.3, pp.513-522. https://doi.org/10.1029/WR012i003p00513
  16. van Genuchten, M. T. (1980), "A closed-form equation for predicting the hydraulic conductivity of unsaturated soils", Soil Science Society of America Journal, Vol.44, pp.892-898. https://doi.org/10.2136/sssaj1980.03615995004400050002x
  17. 송영석, 이남우, 황웅기, 김태형 (2010), "자동 흙-함수특성곡선 시험장치 구축 및 활용", 지질공학, 제20권, 제3호, pp.281-295.

Cited by

  1. 강우시 불포화 준설토로 형성된 제방의 사면안정성 변화에 대한 수치해석적 연구 vol.10, pp.4, 2011, https://doi.org/10.12814/jkgss.2011.10.4.071