DOI QR코드

DOI QR Code

Electrical Properties of Carbon Black Composites for Flexible Fiber Heating Element

유연한 섬유상 발열체용 카본블랙 복합소재의 전기적 특성

  • Park, Ji-Yong (Department of Chemical Engineering, Chungbuk National University) ;
  • Lee, Jong-Dae (Department of Chemical Engineering, Chungbuk National University)
  • Received : 2015.07.23
  • Accepted : 2015.09.02
  • Published : 2015.09.30

Abstract

Carbon composites for flexible fiber heating element were examined to improve the electrical conductivity in this study. Carbon composites using carbon black, denka black, super-c, super-p with/without CNF or dispersant such as BCS03 and Sikament-nn were prepared. Carbon composite slurry was coated on plane film and yarns(cotton, polyester) and the performances of prepared heating materials were investigated by checking electrical surface resistance, adhesion strength. The plane heating element using carbon black under natural drying condition($25^{\circ}C$) had better physical properties such as surface resistance(185.3 Ohm/sq) and adhesion strength(above 90%) than those of other carbon composite heating elements. From these results, polyester heating element coated by carbon black showed better electrical line resistance(33.2 kOhm/cm) than cotton heating element. Then, it was found that polyester heating element coated by carbon black with CNF(3 wt%) and BCS03(1 wt%) appeared best properties(0.604 kOhm/cm).

Keywords

References

  1. K. Jussila, A. Valkama, J. Remes, H. Anttonen and A. Peitso, "The effect of cold protective clothing on comfort and perception of performance", Int. J. Occup. Saf. Ergo., 16 (2), 185-197, (2010). https://doi.org/10.1080/10803548.2010.11076838
  2. Pasut W., Zhang H., Arens E., Kaam S., Zhai Y., "Effect of a heated and cooled office chair on thermal comfort", HVAC and R Research, 19(5), 574-583 (2013).
  3. Y. S. Lee, J. C. Jeong and J. M. Park, "A Trend of R&D in Enviromental Thermoplastic Elastomer", Elastomers Compos, 45(4), 245-249 (2010).
  4. H. L. Lee, S. M. Ha, Y. J. Yoo and S. G. Lee, "Current Trends in Thermally Conductive Polymer Composites", J. polym. Sci. Technol., 24(1), (2013).
  5. H. K. Park, S. M. Kim, J. S. Lee, J. H. Park, Y. K. Hong, C. H. Hong and K. K. Kim, "Flexible plane heater: Graphite and carbon nanotube hybrid nanocomposite", Synth. Met., 203, 127-134 (2015). https://doi.org/10.1016/j.synthmet.2015.02.015
  6. C. H. Doh, B. S. Jin, S. I. Moon, Y. D. Chung, D. Y. Jeong and Y. D. Bang, "Physical and Electrical Properties of Carbon Black/PVDF Composite Electrode as Ohmic Joule Heater", J. Korean Ind. Eng. Chem., 20(6), 692-695 (2009).
  7. R. Chugh and D.D.L. Chung, "Flexible graphite as a heating element", Carbon, 40, 2285-2289 (2002). https://doi.org/10.1016/S0008-6223(02)00141-0
  8. K. S. Yun, Y. C. Park, B. S. Yang, H. H. Min and C. W. Won, "Preparation of Ag powder from $AgNo_3$ by Wet Chemical Reduction Method", J. Korean Powder Metall. Inst., 12(1), (2005)
  9. S. Merilampi, T. Bjorninen, V. Haukka, P. Ruuskanen, L. Ukkonen and L. Sydanheimo, "Analysis of electrically conductive silver ink on stretchable substrates under tensile load", Microelectron. Reliability, 50, 2001-2011 (2010). https://doi.org/10.1016/j.microrel.2010.06.011
  10. J. Kang, H. Kim, K. S. Kim, S. K. Lee, S. Bae, J. H. Ahn, Y. J. Kim, J. B. Choi and B. H. Hong, "High-performance graphene-based transparent flexible heaters", Nano Lett. 11(12), 5154-5158 (2011). https://doi.org/10.1021/nl202311v
  11. C. C HUNG, M. E. DILLEHAY, and M. STAHL., "A heater made from graphite composite material for potential deicing application", J. Aircraft, 24(10), 725-730 (1987). https://doi.org/10.2514/3.45513
  12. Erasto A. Z. C., Claudia A. H. E., Alfredo N. F., Sergio G. F. G., "Synthesis of carbon black/polystyrene conductive nanocomposite. Pickering emulsion effect characterized by TEM", Micron, 42, 263-270 (2011). https://doi.org/10.1016/j.micron.2010.10.005
  13. X. Zhoua, W. Li, M. Wu, S. Tang and D. Liu, "Enhanced dispersibility and dispersion stability ofdodecylamine-protected silver nanoparticles by dodecanethiol forink-jet conductive inks", Appl. Surf. Sci., 292, 537-543 (2014). https://doi.org/10.1016/j.apsusc.2013.12.006
  14. S. G. dos Santos F. and J. W. Swart, "Rapid Thermal Flow of PSG Films in Vacuum Using a Graphite Heater", J. Electrochem. Soc., 137(4), 1252-1255 (1990). https://doi.org/10.1149/1.2086642
  15. V. N. Prokushin, A. A. Shubin, V. V. Kleimenov, V. V. Alekseev and E. N. Marmer, "CARBON HEATING ELEMENTS FOR HIGH-TEMPERATURE FURNACES", Fibre Chem., 24(6), 503-504 (1992). https://doi.org/10.1007/BF00551614
  16. 국가 기술 표준원, "도료와 바니시-도료의 밀착성 시험방법", KS M ISO 2409, (2013).

Cited by

  1. Characterization of carbon nanofiber (CNF)/polymer composite coated on cotton fabrics prepared with various circuit patterns vol.5, pp.None, 2018, https://doi.org/10.1186/s40691-017-0120-2
  2. 저전력 및 고효율 면상발열체를 위한 피치기반 탄소종이 제조 및 특성 vol.31, pp.6, 2018, https://doi.org/10.7234/composres.2018.31.6.412
  3. A Study on Thermal Characteristics of Carbon-Organic Surface Heating Element with Electrodeless Lamp of a Freezer vol.19, pp.1, 2020, https://doi.org/10.14775/ksmpe.2020.19.01.001
  4. 가지 달린 구조의 폴리실라잔을 전구체로 이용해 제조한 카본 나노튜브/실리콘 카보나이트라이드 복합체 시트의 발열특성에 관한 연구 vol.33, pp.6, 2015, https://doi.org/10.7234/composres.2020.33.6.395