Browse > Article
http://dx.doi.org/10.6117/kmeps.2014.21.4.015

Alternative Sintering Technology of Printed Nanoparticles for Roll-to-Roll Process  

Lee, Eun Kyung (Graduate School of NID Fusion Technology, Seoul National University of Science and Technology)
Eun, Kyoungtae (Graduate School of NID Fusion Technology, Seoul National University of Science and Technology)
Ahn, Young Seok (Graduate School of NID Fusion Technology, Seoul National University of Science and Technology)
Kim, Yong Taek (Graduate School of NID Fusion Technology, Seoul National University of Science and Technology)
Chon, Min-Woo (Graduate School of Mechanics and Design, Kookmin University)
Choa, Sung-Hoon (Graduate School of NID Fusion Technology, Seoul National University of Science and Technology)
Publication Information
Journal of the Microelectronics and Packaging Society / v.21, no.4, 2014 , pp. 15-24 More about this Journal
Abstract
Recently, a variety of printing technologies, including ink jet, gravure, and roll-to-roll (R2R) printing, has generated intensive interest in the application of flexible and wearable electronic devices. However, the actual use of printing technique is much limited because the sintering process of the printed nanoparticle inks remains as a huge practical drawback. In the fabrication of the conductive metal film, a post-sintering process is required to achieve high conductivity of the printed film. The conventional thermal sintering takes considerable sintering times, and requires high temperatures. For application to flexible devices, the sintering temperature should be as low as possible to minimize the damage of polymer substrate. Several alternative sintering methods were suggested, such as laser, halogen lamp, infrared, plasma, ohmic, microwave, and etc. Eventually, the new sintering technique should be applicable to large area, R2R, and polymer substrate as well as low cost. This article reviews progress in recent technologies for several sintering methods. The advantages and disadvantages of each technology will be reviewed. Several issues for the application in R2R process are discussed.
Keywords
Flexible transparent electrodes; Nanoparticles sintering; Roll to Roll process; Printed electronics;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 V. Subramanian, J. M. J. Frechet, P. C. Chang, D. C. Huang, J. B. Lee, S. E. Molesa, A. R. Murphy, D. R. Redinger and S. K. Volkman, "Progress toward development of all-printed RFID tags: Materials, processes and devices", Proc. IEEE, 93(7), 1330 (2005).   DOI   ScienceOn
2 S. -J. Hong, J. -W. Kim, C. J. Han, Y. -S. Kim and T. -W. Hong, "Trends on Technology of Eco-friendly Metal and Ceramic Nanoparticle Inks for Direct Printing", J. Miroelectron. Packag. Soc., 17(2), 1 (2010).   과학기술학회마을
3 K. Woo, C. Bae, Y. Jeong, D. Kim and J. Moon, "Inkjet-printed Cu source/drain electrodes for solution-deposited thin film transistors", J. Mater. Chem., 20, 3877 (2010).   DOI
4 Y. M. Shin, S. -S. Chee and J. -H. Lee, "Trends on Synthesis of Cu Nanoparticles by a Wet Reduction Method", J. Microelectron. Packag. Soc., 20(3), 11 (2013).   과학기술학회마을   DOI
5 M. A. M. Leenen, V. Arning, H. Thiem, J. Steiger and R. Anselmann, "Printable Electronics: Flexibility for the Future", Phys. Status Solidi A, 206(4), 588 (2009).   DOI
6 A. L. Dearden, P. J. Smith, D. Y. Shin, N. Reis, B. Derby and P. O'Brien, "A low curing temperature silver ink for use in ink-jet printing and subsequent production of conductive tracks", Macromol. Rapid Commun., 26(4), 315 (2005).   DOI   ScienceOn
7 J. Perelaer, A. W. M. de Laat, C. E. Hendriks and U. S. Schubert, "Inkjet-printed silver tracks: low temperature curing and thermal stability investigation", J. Mater. Chem., 18, 3209 (2008).   DOI
8 J. Perelaer, P. J. Smith, D. Mager, D. Soltman, S. K. Volkman, V. Subramanian, J. G. Korvink and U. S. Schubert, "Printed electronics: The challenges involved in printing devices, interconnects and contacts based on inorganic materials", J. Mater. Chem. 20, 8446 (2010).   DOI
9 M. Jose-Yacaman, C. Gutierrez-Wing, M. Miki, D. -Q. Yang, K. N. Piyakis and E. Sacher, "Surface diffusion and coalescence of mobile metal nanoparticles", J. Phys. Chem. B, 109(19), 9703 (2005).   DOI
10 D. Huang, F. Liao, S. Molesa, D. Redinger and V. Subramanian, "Plastic- compatible low resistance printable gold nanoparticle conductors for flexible electronics", J. Electrochem. Soc., 150(7), G412 (2003).   DOI   ScienceOn
11 S. H Ko, H. Pan, Daeho Lee, Costas P. Grigoropoulos and H. K. Park, "Nanoparticle selective laser sintering processing for a flexible display fabrication", J. Appl. Phys., 49(5S1), 05EC03 (2010).
12 N. Guo and M. C. Leu, "Effect of different graphite materials on the electrical conductivity and flexural strength of bipolar plates fabricated using selective laser sintering", International Journal of Hydrogen Energy, 37(4), 3558 (2012).   DOI
13 G. Yaron and L. D. Hess, "Application of laser annealing techniques to increase channel mobility in silicon on sapphire transistors", Appl. Phys. Lett., 36(3), 220 (1980).   DOI
14 M. Joo, B. Lee, S. Jeong and M. Lee, "Comparative studies on thermal and laser sintering for highly conductive Cu films printable on plastic substrate", Thin Solid Films, 520(7), 2878 (2012).   DOI
15 J. S. Kang, J. Ryu, H. S. Kim and H. T. Hahn, "Sintering of inkjet-printed silver nanoparticles at room temperature using intense pulsed light", J. Electron. Mater., 40(11), 2268 (2011).   DOI
16 S. H. Ko, H. Pan and C. P. Grigoropoulos, "Air stable high resolution organic transistors by selective laser sintering of ink-jet printed metal nanoparticles", Appl. Phys. Lett., 90, 141103 (2007).   DOI
17 S. -H. Park, S. Jang, D. -J. Lee, J. Oh and H. -S, Kim, "Two-step flash light sintering process for crack-free inkjet-printed Ag films", J. Micromech. Microeng., 23(1), 015013 (2013).   DOI
18 L. Schade, S. Franzka, S. Hardt, H. Wiggers and N. Hartmann, "Sintering of thin titanium dioxide nanoparticle films via photothermal processing with ultraviolet continuous-wave lasers", Appl. Surf. Sci., 278, 336 (2013).   DOI   ScienceOn
19 A. V. Shyichuk, J. R. White, I. H. Craig and I. D. Syrotynska, "Comparison of UV-degradation depth-profiles in polyethylene, polypropylene and an ethylene-propylene copolymer", Polymer Degradation and Stability, 88(3), 415 (2005).   DOI
20 D. J. Lee, S. H. Park, S. Jang, H. S. Kim, J. H. Oh and Y. W. Song, "Pulsed light sintering characteristics of inkjet-printed nanosilver films on a polmer substrate", J. Micromech. Microeng., 21(12), 125023 (2011).   DOI
21 D. J. Lee and J. H. Oh, "Inkjet printing of conductive Ag lines and their electrical and mechanical characterization", Thin Solid Films, 518(22), 6352 (2010).   DOI
22 H. -S. Kim, S. R. Dhage, D. -E. Shim and H. T. Hahn, "Intense pulsed light sintering of copper nanoink for printed electronics", Appl. Phys. A, 97(4), 791 (2009).   DOI   ScienceOn
23 J. Ryu, H. -S. Kim and H. T. Hahn, "Reactive sintering of copper nanoparticles using intense pulsed light for printed electronics", J. Electron. Mater., 40(1), 42 (2011).   DOI
24 S. Wcunscher, S. Stumpf, A. Teichler, O. Pabst, J. Perelaer, E. Beckertd and U. S. Schubert, "Localized atmospheric plasma sintering of inkjet printed silver nanoparticles", J. Mater. Chem., 22, 24569 (2012).   DOI
25 S. Wunscher, S. Stumpf, J. Perelaer and U. S. Schubert "Towards single-pass plasma sintering: temperature influence of atmospheric pressure plasma sintering of silver nanoparticle ink", J. Mater. Chem. C, 2, 1642 (2014).   DOI
26 D. Tobjork, H. Aarnio, P. Pulkkinen, R. Bollstrom, A. Maattanen, P. Ihalainen, T. Makela, J. Peltonen, M. Toivakka, H. Tenhu and R. Osterbacka, "IR-sintering of ink-jet printed metal-nanoparticles on paper", Thin Solid Films, 520(7), 2949 (2012).   DOI
27 M. Cherrington, T. C. Claypole, D. Deganello, I. Mabbett, T. Watsonb and D. Worsley, "Ultrafast near-infrared sintering of a slot-die coated nano-silver conducting ink", J. Mater. Chem., 21, 7562 (2011).   DOI
28 I. Reinhold, C. E. Hendriks, R. Eckardt, J. M. Kranenburg, J. Perelaer, R. R. Baumannbd and U. S. Schubert, "Argon plasma sintering of inkjet printed silver tracks on polymer substrates", J. Mater. Chem., 19, 3384 (2009).   DOI
29 M. L. Allen, M. Aronniemi, T. Mattila, A. Alastalo, K. Ojanpera, M. Suhonen and H. Seppa, "Electrical sintering of nanoparticle structures", Nanotechnology, 19(17), 175201 (2008).   DOI
30 M. L. Allen, A. Alastalo, M. Suhonen, T. Mattila, J. Leppaniemi and H. Seppa, "Contactless Electrical Sintering of Silver Nanoparticles on Flexible Substrates", IEEE Trans. Microwave Theory and Techniques, 59(5), 1419 (2011).   DOI
31 D. A. Roberson, R. B. Wicker and E. MacDonald, "Ohmic Curing of Printed Silver Conductive Traces" J. Electron. Mater., 41(9), 2553 (2012).   DOI