• 제목/요약/키워드: conductive carbon

검색결과 455건 처리시간 0.025초

탄소나노튜브(CNT)를 혼입한 초고성능 콘크리트(UHPC)의 고고도 전자기파(HEMP) 방호성능 평가 (Evaluation on High Altitude Electromagnetic Pulse(HEMP) Protection Performance of Carbon Nanotube(CNT) Embedded Ultra-High Performance Concrete(UHPC))

  • 정명준;홍성걸
    • 한국군사과학기술학회지
    • /
    • 제22권2호
    • /
    • pp.151-161
    • /
    • 2019
  • In this study, to evaluate the High Altitude Electromagnetic Pulse(HEMP) protection performance of UHPC/CNT composites by the content of Carbon nanotubes(CNTs), Electromagnetic Shielding Effectiveness(SE) test was performed based on MIL-STD-188-125-1. And the results were verified by applying the Antenna theory. In the case of UHPC with a thickness of 200 mm mixed with 1 % CNT of cement weight, the SE was 28.98 dB at 10 kHz and 45.94 dB at 1 GHz. Then the Scabbing limit thickness for bullet proof was computed based on the result of compressive strength test which was 170 MPa, and it was examined whether it satisfied the HEMP protection criteria. As a result, the required HEMP shielding criteria were satisfied in all frequency ranges as well as the scabbing limit thickness was reduced by up to 43 % compared with that of ordinary concrete.

발열제어부품소재 적용을 위한 실리콘 복합조성물의 열전도 특성 (Thermal Characteristics of Silicone Composites for the Application to Heat-Controllable Components)

  • 곽호두;오원태
    • 한국전기전자재료학회논문지
    • /
    • 제32권2호
    • /
    • pp.116-121
    • /
    • 2019
  • Hexagonal boron nitride particles (s-hBN) modified with 3-aminopropyl triethoxysilane (APTES) were used for the preparation of silicone composite materials. The microstructure of the composite materials was observed, and the thermal conduction and mechanical characteristics of the composite sheets were studied based on the compositions and microstructures. When a small amount of s-hBN particles was used, the thermal conductivity of the composite improved as a whole, and the tensile strength of the sheet also increased. The thermal conductivity and tensile strength of the composite in which a small amount of carbon fiber was added along with s-hBN were further improved. However, the use of carbon nanotubes with structural characteristics similar to those of carbon fiber resulted in lower thermal conductivity and tensile strength. Elastic silicone composites exhibiting 2.5 W/mK of thermal conductivity and a low hardness are expected to be used as thermally conductive interfacial sheet materials.

Selective acetate detection using functional carbon nanotube fiber

  • Choi Seung-Ho;Lee, Joon-Seok;Choi, Won-Jun;Lee, Sungju;Jeong, Hyeon Su;Choi, Seon-Jin
    • 센서학회지
    • /
    • 제30권6호
    • /
    • pp.357-363
    • /
    • 2021
  • We developed a chemiresistive anion sensor using highly conductive carbon nanotube fibers (CNTFs) functionalized with anion receptors. Mechanically robust CNTFs were prepared via wet-spinning utilizing the nematic liquid crystal properties of CNTs in chlorosulfonic acid (CSA). For anion detection, polymeric receptors composed of dual-hydrogen bond donors, including thiourea 1, squaramide 2, and croconamide 3, were prepared and bonded non-covalently on the surface of the CNTFs. The binding affinities of the anion receptors were studied using UV-vis titrations. The results revealed that squaramide 2 exhibited the highest binding affinity toward AcO-, followed by thiourea 1 and croconamide 3. This trend was consistent with the chemiresistive sensing responses toward AcO- using functional CNTFs. Selective anion sensing properties were observed that CNTFs functionalized with squaramide 2 exhibited a response of 1.08% toward 33.33 mM AcO-, while negligible responses (<0.1%) were observed for other anions such as Cl-, Br-, and NO3-. The improved response was attributed to the internal charge transfer of dual-hydrogen bond donors owing to the deprotonation of the receptor upon the addition of AcO-.

3D Hierarchical Flower-Like Cobalt Ferrite Nanoclusters-Decorated Cotton Carbon Fiber anode with Improved Lithium Storage Performance

  • Meng, Yanshuang;Cheng, Yulong;Ke, Xinyou;Ren, Guofeng;Zhu, Fuliang
    • Journal of Electrochemical Science and Technology
    • /
    • 제12권2호
    • /
    • pp.285-295
    • /
    • 2021
  • The inverse spinel Cobalt ferrite (CoFe2O4, CFO) is considered to be a promising alternative to commercial graphite anodes for lithium ion batteries (LIBs). However, the further development of CFO is limited by its unstable structure during battery cycling and low electrical conductivity. In an effort to address the challenge, we construct three-dimensional hierarchical flower-like CFO nanoclusters (CFO NCs)-decorated carbonized cotton carbon fiber (CFO NCs/CCF) composite. This structure is consisted of microfibers and nanoflower cluster composited of CFO nanoparticle, in which CCF can be used as a long-range conductive matrix, while flower-like CFO NCs can provide abundant active sites, large electrode/electrolyte interface, short lithium ion diffusion path, and alleviated structural stress. As anode materials in LIBs, the flower-like CFO NCs/CCF exhibits excellent electrochemical performance. After 100 cycles at a current density of 0.3 A g-1, the CFO NCs/CCF delivers a discharge/charge capacity of 1008/990 mAh g-1. Even at a high current density of 15 A g-1, it still maintains a charge/discharge capacity of 362/361 mAh g-1.

담지 방법을 통해 유리 기판 위에 형성된 탄소나노튜브 네트워크의 전기적 및 광학적 특성 (Electrical and Optical Properties of Carbon Nanotube Networks Formed on Glass Substrate by Dip-Coating Method)

  • 장의윤;강태준;임형욱;김대원;김용협
    • Composites Research
    • /
    • 제21권1호
    • /
    • pp.8-15
    • /
    • 2008
  • 담지 방법을 통해 유리 기판 위에 단일벽탄소나노튜브 네트워크를 형성하였고, 코팅 공정변수(담지 횟수, 콜로이드 용액의 농도, 기판의 인출 속도)에 따른 탄소나노튜브 네트워크의 전기적 및 광학적 특성 변화를 관찰하였다. 그 결과 네트워크의 면저항 및 투과도는 코팅 공정변수들에 의해 민감하게 조절됨을 확인할 수 있었다. 탄소나노튜브 네트워크는 매우 균일한 면저항을 보이는 동시에, 가시광선 영역에서 우수한 투과도 특성을 보였다.

MREIT of Postmortem Swine Legs using Carbon-hydrogel Electrodes

  • Minhas, Atul S.;Jeong, Woo-Chul;Kim, Young-Tae;Kim, Hyung-Joong;Lee, Tae-Hwi;Woo, Eung-Je
    • 대한의용생체공학회:의공학회지
    • /
    • 제29권6호
    • /
    • pp.436-442
    • /
    • 2008
  • Magnetic resonance electrical impedance tomography(MREIT) has been suggested to produce cross-sectional conductivity images of an electrically conducting object such as the human body. In most previous studies, recessed electrodes have been used to inject imaging currents into the object. An MRI scanner was used to capture induced magnetic flux density data inside the object and a conductivity image reconstruction algorithm was applied to the data. This paper reports the performance of a thin and flexible carbon-hydrogel electrode that replaces the bulky and rigid recessed electrode in previous studies. The new carbon-hydrogel electrode produces a negligible amount of artifacts in MR and conductivity images and significantly simplifies the experimental procedure. We can fabricate the electrode in different shapes and sizes. Adding a layer of conductive adhesive, we can easily attach the electrode on an irregular surface with an excellent contact. Using a pair of carbon-hydrogel electrodes with a large contact area, we may inject an imaging current with increased amplitude primarily due to a reduced average current density underneath the electrodes. Before we apply the new electrode to a human subject, we evaluated its performance by conducting MREIT imaging experiments of five swine legs. Reconstructed conductivity images of the swine legs show a good contrast among different muscles and bones. We suggest a future study of human experiments using the carbon-hydrogel electrode following the guideline proposed in this paper.

Correlation Between Mechanical Behavior and Electrical Resistance Change in Carbon Particle Dispersed Plastic Composite

  • Song, D.Y.;Takeda, N.;Kim, J.K.
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집A
    • /
    • pp.377-382
    • /
    • 2001
  • Mechanical behavior and electrical resistance change of CPDP (carbon particle dispersed plastic) composite consisting of epoxy resin and conductive carbon particle were investigated under monotonic loading and repeated loading-unloading. The electrical resistance almost linearly increased with increasing strain during loading and the residual electrical resistance was observed even after removing load. The value of the residual electrical resistance was dependent on the maximum strain under the applied stress. This result suggests that the estimation of maximum strain (i.e., damage) is possible by the measuring electrical resistance of composite. The behavior of electrical resistance change during and after loading was discussed on the basis of the results of microscopic deformation and fracture observation. Moreover, the relationship between the volume fraction of carbon particle and the electrical resistivity of CPDP was investigated in relation to the percolation theory. Simulation model of percolation structure was established by Monte Carlo method and the simulation result was compared to the experimental results. The electrical resistance change under applied loading was analyzed quantitatively using the percolation equation and a simple model for the critical volume fraction of carbon particle as a function of the mechanical stress. It was revealed that the prediction was in good agreement with the experimental result except in the region near the failure of material.

  • PDF

ZIF-8과 탄소기반물질 복합체를 이용한 슈퍼커패시터 및 화학센서의 최신연구동향 (Recent research trend of supercapacitor and chemical sensor using composite of ZIF-8 and carbon-based material)

  • 김상준;이재민;조승근;이은빈;이승기;이정우
    • 한국표면공학회지
    • /
    • 제55권2호
    • /
    • pp.51-62
    • /
    • 2022
  • Metal-organic framework (MOF) is one of the representative porous materials composed of metal ions and organic linkers. In spite of many advantages of the MOFs such as high specific surface area and ease of structure control, drawbacks have become obstacles to the practical use of them with poor electrical conductivity and chemical stability. The ZIF-8, which is consisted of zinc and imidazole linker, is one of the solutions to improve the chemical stability issue. In addition, composites using the ZIF-8 and carbonbased materials are widely used to enhance the electrical conductivity. In this regard, supercapacitor is very attractive field for using the composites, because most of carbon-based materials are porous and conductive. Also, for sensor applications, the ZIF-8 composite is suitable material to meet the requirement in terms of the selectivity and sensitivity. This review summarizes recent progress of the composite materials with the ZIF-8 and the carbon-based materials for the supercapacitors and the chemical sensors. In particular, the composites are classified into ZIF-8-graphene, ZIF-8-carbon nanotube and ZIF-8-other carbon-based material.

무정제 단일벽 탄소나노튜브와 은나노와이어가 적층으로 코팅된 투명전도성 고분자 필름의 전기 전도성, 광학 투과도 및 산화안정성 (Electrical Conductivity, Optical Transmittance, and Oxidation Stability of Transparent Conductive Polymer Film Coated With Layered Pristine Single-walled Carbon Nanotube and Silver Nanowire)

  • 이영실
    • Korean Chemical Engineering Research
    • /
    • 제61권3호
    • /
    • pp.456-462
    • /
    • 2023
  • 탄소나토튜브를 투명 전극에 활용하기 위한 필수요소인 정제과정없이 무정제 단일벽 탄소나노튜브(single-walled carbon nanotube, SWCNT)와 은나노와이어(silver nanowire) 분산액을 제조하여 폴리에틸렌 테레프탈레이트(polyethylene terephthalate, PET) 필름에 바 코팅을 이용하여 전기전도성 투명전극을 제조하였다. PET 기판 위에 SWCNT 및 은 나노와이어를 각각 포함하는 코팅층을 상호 교차시켜 적층함으로서 은나노와이어의 전기 전도도와 투과도를 극대화시키고 헤이즈 (haze)가 증가되는 단점을 극복하기 위해 SWCNT를 도입하였고, 무정제 SWCNT내에 존재하는 금속 촉매의 산화에 의해서 항온항습 테스트 후 저항이 급격하게 증가하는 문제를 은 나노와이어가 전기적 네트워크 형성에 기여하여 산화에 대한 안정성을 확보할 수 있었다. SWCNT함량이 0.025 wt% 인 분산액을 PET 기판에 먼저 코팅하고 그 위에 은 나노와이어의 함량이 0.05 wt%인 분산액을 코팅한 투명전극의 시트 저항은 47 Ω/□, 투과도는 96.72%, 헤이즈는 1.93% 로 전기적 광학적 특성이 우수하게 나왔고, 산화 안정성 평가를 위한 항온 항습 실험 후 시트 저항의 변화율이 6.4% 로 적게 나타나서 장기적 사용에 적합하다는 것을 알 수 있었다. 무정제 SWCNT 사용함으로 저비용, 친환경 하이브리드 투명전극을 상업적으로 활용 가능한 수준의 제품이 개발되었다.

고전기장을 이용한 도전성 탄소섬유/폴리에틸렌 복합필름의 제조 및 특성 연구 : 고분자 점착하층의 영향 (Fabrication and Properties of Conductive Carbon Fiber/Polyethylene Composite Films Fabricated under High Intensity Electric Fields : Effect of Polymer Sublayer)

  • 박민;김준경;임순호;고문배;최철림;;방효재;이광희
    • 폴리머
    • /
    • 제24권2호
    • /
    • pp.268-275
    • /
    • 2000
  • 고전기장을 이용하여 제조한 도전성 탄소섬유/폴리에틸렌 복합필름에 있어서 고분자 점착하층의 두께가 제조된 필름의 체적비저항과 인장강도에 미치는 효과에 대하여 연구하였다. 탄소섬유(CF) 함량과 CF 층밀도에 따라 제조된 필름의 체적비저항과 인장강도의 점착하층에 대한 의존성의 양상은 복잡하게 나타났다. 이는 점착하층의 증가에 따라서 필름 하층면에 중심부나 위쪽에 비하여 CF 농도가 낮은 절연성 고분자층의 두에가 증가하고 필름 상층면 근처에서는 CF의 함침에 필요한 고분자 매트릭스의 양이 적어져 매트릭스 함침이 불충분하여 기공이 포함된 구조를 형성시키는 효과와 증가된 매트릭스의 유동성을 바탕으로 CF 분산성이 향상되고 동시에 보다 치밀한 구조가 형성되는 두 가지 상반되는 효과의 상대적 기여 정도의 차이를 통하여 설명할 수 있었다. 이들 결과는 전자파 차폐용 고도전성 고분자 차폐필름의 제조에 있어서 전기적 성질과 기계적 성질의 최적화하는데 중요하다.

  • PDF