DOI QR코드

DOI QR Code

Selective acetate detection using functional carbon nanotube fiber

  • Choi Seung-Ho (Division of Materials Science and Engineering, Hanyang University) ;
  • Lee, Joon-Seok (Division of Materials Science and Engineering, Hanyang University) ;
  • Choi, Won-Jun (Division of Materials Science and Engineering, Hanyang University) ;
  • Lee, Sungju (Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST)) ;
  • Jeong, Hyeon Su (Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST)) ;
  • Choi, Seon-Jin (Division of Materials Science and Engineering, Hanyang University)
  • Received : 2021.10.15
  • Accepted : 2021.11.19
  • Published : 2021.11.30

Abstract

We developed a chemiresistive anion sensor using highly conductive carbon nanotube fibers (CNTFs) functionalized with anion receptors. Mechanically robust CNTFs were prepared via wet-spinning utilizing the nematic liquid crystal properties of CNTs in chlorosulfonic acid (CSA). For anion detection, polymeric receptors composed of dual-hydrogen bond donors, including thiourea 1, squaramide 2, and croconamide 3, were prepared and bonded non-covalently on the surface of the CNTFs. The binding affinities of the anion receptors were studied using UV-vis titrations. The results revealed that squaramide 2 exhibited the highest binding affinity toward AcO-, followed by thiourea 1 and croconamide 3. This trend was consistent with the chemiresistive sensing responses toward AcO- using functional CNTFs. Selective anion sensing properties were observed that CNTFs functionalized with squaramide 2 exhibited a response of 1.08% toward 33.33 mM AcO-, while negligible responses (<0.1%) were observed for other anions such as Cl-, Br-, and NO3-. The improved response was attributed to the internal charge transfer of dual-hydrogen bond donors owing to the deprotonation of the receptor upon the addition of AcO-.

Keywords

Acknowledgement

This study was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (No. 2020R1C1C1010336). This study was also supported by the U.S. Army Combat Capabilities Development Command Soldier Center (DEVCOM SC) and International Technology Center Pacific (ITC-PAC) Global Research Project under contract FA520920P0130 and conducted at Hanyang University.

References

  1. R. Z. Wu, X. Yang, L. W. Zhang, and P. P. Zhou, "Luminescent lanthanide metal-organic frameworks for chemical sensing and toxic anion detection", Dalton Trans., Vol. 46, No. 30, pp. 9859-9867, 2017. https://doi.org/10.1039/c7dt01790a
  2. M. T. Gabr and F. C. Pigge, "A fluorescent turn-on probe for cyanide anion detection based on an AIE active cobalt (II) complex", Dalton Trans., Vol. 47, No. 6, pp. 2079-2085, 2018. https://doi.org/10.1039/c7dt04242f
  3. Y. Qin, A. U. Alam, S. Pan, M. M. Howlader, R. Ghosh, N.- X. Hu, H. Jin, S. Dong, C. H. Chen, and M. J. Deen, "Integrated water quality monitoring system with pH, free chlorine, and temperature sensors", Sens. Actuator B-Chem., Vol. 255, No. 1, pp. 781-790, 2018. https://doi.org/10.1016/j.snb.2017.07.188
  4. J. Xu, Y. Fang, and J. Chen, "Wearable Biosensors for Non-Invasive Sweat Diagnostics", Biosensors, Vol. 11, No. 8, pp. 245(1)-245(21), 2021.
  5. A. J. Wolfe, "The acetate switch", Microbiol. Mol. Biol. Rev., Vol. 69, No. 1, pp. 12-50, 2005. https://doi.org/10.1128/MMBR.69.1.12-50.2005
  6. S. Pinhal, D. Ropers, J. Geiselmann, and H. de Jong, "Acetate Metabolism and the Inhibition of Bacterial Growth by Acetate", J. Bacteriol., Vol. 201, No. 13, pp. e00147-19(1)-e00147-19(19), 2019.
  7. L. Chen, S. N. Berry, X. Wu, E. N. Howe, and P. A. Gale, "Advances in anion receptor chemistry", Chem, Vol. 6, No. 1, pp. 61-141, 2020. https://doi.org/10.1016/j.chempr.2019.12.002
  8. Y. Wu, X. Peng, J. Fan, S. Gao, M. Tian, J. Zhao, and S. Sun, "Fluorescence sensing of anions based on inhibition of excited-state intramolecular proton transfer", J. Org. Chem., Vol. 72, No. 1, pp. 62-70, 2007. https://doi.org/10.1021/jo061634c
  9. B. Zavala-Contreras, H. Santacruz-Ortega, A. U. Orozco-Valencia, M. Inoue, K. Ochoa Lara, and R.-E. Navarro, "Optical Anion Receptors with Urea/Thiourea Subunits on a TentaGel Support", ACS omega, Vol. 6, No. 14, pp. 9381-9390, 2021. https://doi.org/10.1021/acsomega.0c05554
  10. G. Picci, M. Kubicki, A. Garau, V. Lippolis, R. Mocci, A. Porcheddu, R. Quesada, P. C. Ricci, M. A. Scorciapino, and C. Caltagirone, "Simple squaramide receptors for highly efficient anion binding in aqueous media and transmembrane transport", Chem. Commun., Vol. 56, No. 75, pp. 11066-11069, 2020. https://doi.org/10.1039/d0cc04090h
  11. V. E. Zwicker, K. K. Yuen, D. G. Smith, J. Ho, L. Qin, P. Turner, and K. A. Jolliffe, "Deltamides and Croconamides: Expanding the Range of Dual H-bond Donors for Selective Anion Recognition", Chem. Eur. J., Vol. 24, No. 5, pp. 1140-1150, 2018. https://doi.org/10.1002/chem.201704388
  12. I. Sandler, F. A. Larik, N. Mallo, J. E. Beves, and J. Ho, "Anion Binding Affinity: Acidity versus Conformational Effects", J. Org. Chem., Vol. 85, No. 12, pp. 8074-8084, 2020. https://doi.org/10.1021/acs.joc.0c00888
  13. G. Bergamaschi, M. Boiocchi, E. Monzani, and V. Amendola, "Pyridinium/urea-based anion receptor: methine formation in the presence of basic anions", Org. Biomol. Chem., Vol. 9, No. 24, pp. 8276-8283, 2011. https://doi.org/10.1039/c1ob06193c
  14. S. J. Choi, B. Yoon, J. D. Ray, A. Netchaev, L. C. Moores, and T. M. Swager, "Chemiresistors for the Real-Time Wireless Detection of Anions", Adv. Funct. Mater., Vol. 30, No. 7, pp. 1907087(1)-1907087(9), 2020. https://doi.org/10.1002/adfm.201907087
  15. S. Ha, J. Lee, K.-s. Kim, E. J. Choi, P. Nhem, and C. Song, "Anion-responsive thiourea-based gel actuator", Chem. Mater., Vol. 31, No. 15, pp. 5735-5741, 2019. https://doi.org/10.1021/acs.chemmater.9b01715
  16. R. Hein, P. D. Beer, and J. J. Davis, "Electrochemical anion sensing: supramolecular approaches", Chem. Rev., Vol. 120, No. 3, pp. 1888-1935, 2020. https://doi.org/10.1021/acs.chemrev.9b00624
  17. D. A. McNaughton, M. Fares, G. Picci, P. A. Gale, and C. Caltagirone, "Advances in fluorescent and colorimetric sensors for anionic species", Coord. Chem. Rev., Vol. 427, pp. 213573(1)- 213573(44), 2021. https://doi.org/10.1016/j.ccr.2020.213573
  18. V. Schroeder, S. Savagatrup, M. He, S. B. Ling, and T. M. Swager, "Carbon Nanotube Chemical Sensors", Chem. Rev., Vol. 119, No. 1, pp. 599-663, 2019. https://doi.org/10.1021/acs.chemrev.8b00340
  19. H. C. Su, C. H. Chen, Y. C. Chen, D. J. Yao, H. Chen, Y. C. Chang, and T. R. Yew, "Improving the adhesion of carbon nanotubes to a substrate using microwave treatment", Carbon, Vol. 48, No. 3, pp. 805-812, 2010. https://doi.org/10.1016/j.carbon.2009.10.032
  20. R. Tang, Y. Shi, Z. Hou, and L. Wei, "Carbon nanotube-based chemiresistive sensors", Sensors, Vol. 17, No. 4, pp. 882, 2017. https://doi.org/10.3390/s17040882
  21. J. H. Rouse, "Polymer-assisted dispersion of single-walled carbon nanotubes in alcohols and applicability toward carbon Nanotube/Sol-Gel composite formation", Langmuir, Vol. 21, No. 3, pp. 1055-1061, 2005. https://doi.org/10.1021/la0481039
  22. S. F. Liu, L. C. Moh, and T. M. Swager, "Single-walled carbon nanotube-metalloporphyrin chemiresistive gas sensor arrays for volatile organic compounds", Chem. Mater., Vol. 27, No. 10, pp. 3560-3563, 2015. https://doi.org/10.1021/acs.chemmater.5b00153
  23. B. Yoon, S. J. Choi, T. M. Swager, and G. F. Walsh, "Switchable single-walled carbon nanotube-polymer composites for CO2 sensing", ACS Appl. Mater. Interfaces, Vol. 10, No. 39, pp. 33373-33379, 2018. https://doi.org/10.1021/acsami.8b11689
  24. S. J. Choi, B. Yoon, S. B. Lin, and T. M. Swager, "Functional Single-Walled Carbon Nanotubes for Anion Sensing", ACS Appl. Mater. Interfaces, Vol. 12, No. 25, pp. 28375-28382, 2020. https://doi.org/10.1021/acsami.0c03813
  25. B. Yoon, and S. J. Choi, "Selective acetate recognition and sensing using SWCNTs functionalized with croconamides", Sens. Actuator B-Chem., Vol. 346, No. 130461, pp. 1-8, 2021.