Browse > Article
http://dx.doi.org/10.46670/JSST.2021.30.6.357

Selective acetate detection using functional carbon nanotube fiber  

Choi Seung-Ho (Division of Materials Science and Engineering, Hanyang University)
Lee, Joon-Seok (Division of Materials Science and Engineering, Hanyang University)
Choi, Won-Jun (Division of Materials Science and Engineering, Hanyang University)
Lee, Sungju (Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST))
Jeong, Hyeon Su (Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST))
Choi, Seon-Jin (Division of Materials Science and Engineering, Hanyang University)
Publication Information
Journal of Sensor Science and Technology / v.30, no.6, 2021 , pp. 357-363 More about this Journal
Abstract
We developed a chemiresistive anion sensor using highly conductive carbon nanotube fibers (CNTFs) functionalized with anion receptors. Mechanically robust CNTFs were prepared via wet-spinning utilizing the nematic liquid crystal properties of CNTs in chlorosulfonic acid (CSA). For anion detection, polymeric receptors composed of dual-hydrogen bond donors, including thiourea 1, squaramide 2, and croconamide 3, were prepared and bonded non-covalently on the surface of the CNTFs. The binding affinities of the anion receptors were studied using UV-vis titrations. The results revealed that squaramide 2 exhibited the highest binding affinity toward AcO-, followed by thiourea 1 and croconamide 3. This trend was consistent with the chemiresistive sensing responses toward AcO- using functional CNTFs. Selective anion sensing properties were observed that CNTFs functionalized with squaramide 2 exhibited a response of 1.08% toward 33.33 mM AcO-, while negligible responses (<0.1%) were observed for other anions such as Cl-, Br-, and NO3-. The improved response was attributed to the internal charge transfer of dual-hydrogen bond donors owing to the deprotonation of the receptor upon the addition of AcO-.
Keywords
Dual-hydrogen bond donor; Carbon nanotube fiber; Acetate; Chemiresistive anion sensor;
Citations & Related Records
연도 인용수 순위
  • Reference
1 R. Z. Wu, X. Yang, L. W. Zhang, and P. P. Zhou, "Luminescent lanthanide metal-organic frameworks for chemical sensing and toxic anion detection", Dalton Trans., Vol. 46, No. 30, pp. 9859-9867, 2017.   DOI
2 M. T. Gabr and F. C. Pigge, "A fluorescent turn-on probe for cyanide anion detection based on an AIE active cobalt (II) complex", Dalton Trans., Vol. 47, No. 6, pp. 2079-2085, 2018.   DOI
3 Y. Qin, A. U. Alam, S. Pan, M. M. Howlader, R. Ghosh, N.- X. Hu, H. Jin, S. Dong, C. H. Chen, and M. J. Deen, "Integrated water quality monitoring system with pH, free chlorine, and temperature sensors", Sens. Actuator B-Chem., Vol. 255, No. 1, pp. 781-790, 2018.   DOI
4 J. Xu, Y. Fang, and J. Chen, "Wearable Biosensors for Non-Invasive Sweat Diagnostics", Biosensors, Vol. 11, No. 8, pp. 245(1)-245(21), 2021.
5 A. J. Wolfe, "The acetate switch", Microbiol. Mol. Biol. Rev., Vol. 69, No. 1, pp. 12-50, 2005.   DOI
6 G. Picci, M. Kubicki, A. Garau, V. Lippolis, R. Mocci, A. Porcheddu, R. Quesada, P. C. Ricci, M. A. Scorciapino, and C. Caltagirone, "Simple squaramide receptors for highly efficient anion binding in aqueous media and transmembrane transport", Chem. Commun., Vol. 56, No. 75, pp. 11066-11069, 2020.   DOI
7 V. E. Zwicker, K. K. Yuen, D. G. Smith, J. Ho, L. Qin, P. Turner, and K. A. Jolliffe, "Deltamides and Croconamides: Expanding the Range of Dual H-bond Donors for Selective Anion Recognition", Chem. Eur. J., Vol. 24, No. 5, pp. 1140-1150, 2018.   DOI
8 G. Bergamaschi, M. Boiocchi, E. Monzani, and V. Amendola, "Pyridinium/urea-based anion receptor: methine formation in the presence of basic anions", Org. Biomol. Chem., Vol. 9, No. 24, pp. 8276-8283, 2011.   DOI
9 L. Chen, S. N. Berry, X. Wu, E. N. Howe, and P. A. Gale, "Advances in anion receptor chemistry", Chem, Vol. 6, No. 1, pp. 61-141, 2020.   DOI
10 S. J. Choi, B. Yoon, J. D. Ray, A. Netchaev, L. C. Moores, and T. M. Swager, "Chemiresistors for the Real-Time Wireless Detection of Anions", Adv. Funct. Mater., Vol. 30, No. 7, pp. 1907087(1)-1907087(9), 2020.   DOI
11 R. Hein, P. D. Beer, and J. J. Davis, "Electrochemical anion sensing: supramolecular approaches", Chem. Rev., Vol. 120, No. 3, pp. 1888-1935, 2020.   DOI
12 D. A. McNaughton, M. Fares, G. Picci, P. A. Gale, and C. Caltagirone, "Advances in fluorescent and colorimetric sensors for anionic species", Coord. Chem. Rev., Vol. 427, pp. 213573(1)- 213573(44), 2021.   DOI
13 H. C. Su, C. H. Chen, Y. C. Chen, D. J. Yao, H. Chen, Y. C. Chang, and T. R. Yew, "Improving the adhesion of carbon nanotubes to a substrate using microwave treatment", Carbon, Vol. 48, No. 3, pp. 805-812, 2010.   DOI
14 S. F. Liu, L. C. Moh, and T. M. Swager, "Single-walled carbon nanotube-metalloporphyrin chemiresistive gas sensor arrays for volatile organic compounds", Chem. Mater., Vol. 27, No. 10, pp. 3560-3563, 2015.   DOI
15 B. Yoon, and S. J. Choi, "Selective acetate recognition and sensing using SWCNTs functionalized with croconamides", Sens. Actuator B-Chem., Vol. 346, No. 130461, pp. 1-8, 2021.
16 S. Pinhal, D. Ropers, J. Geiselmann, and H. de Jong, "Acetate Metabolism and the Inhibition of Bacterial Growth by Acetate", J. Bacteriol., Vol. 201, No. 13, pp. e00147-19(1)-e00147-19(19), 2019.
17 B. Yoon, S. J. Choi, T. M. Swager, and G. F. Walsh, "Switchable single-walled carbon nanotube-polymer composites for CO2 sensing", ACS Appl. Mater. Interfaces, Vol. 10, No. 39, pp. 33373-33379, 2018.   DOI
18 I. Sandler, F. A. Larik, N. Mallo, J. E. Beves, and J. Ho, "Anion Binding Affinity: Acidity versus Conformational Effects", J. Org. Chem., Vol. 85, No. 12, pp. 8074-8084, 2020.   DOI
19 R. Tang, Y. Shi, Z. Hou, and L. Wei, "Carbon nanotube-based chemiresistive sensors", Sensors, Vol. 17, No. 4, pp. 882, 2017.   DOI
20 Y. Wu, X. Peng, J. Fan, S. Gao, M. Tian, J. Zhao, and S. Sun, "Fluorescence sensing of anions based on inhibition of excited-state intramolecular proton transfer", J. Org. Chem., Vol. 72, No. 1, pp. 62-70, 2007.   DOI
21 S. Ha, J. Lee, K.-s. Kim, E. J. Choi, P. Nhem, and C. Song, "Anion-responsive thiourea-based gel actuator", Chem. Mater., Vol. 31, No. 15, pp. 5735-5741, 2019.   DOI
22 V. Schroeder, S. Savagatrup, M. He, S. B. Ling, and T. M. Swager, "Carbon Nanotube Chemical Sensors", Chem. Rev., Vol. 119, No. 1, pp. 599-663, 2019.   DOI
23 S. J. Choi, B. Yoon, S. B. Lin, and T. M. Swager, "Functional Single-Walled Carbon Nanotubes for Anion Sensing", ACS Appl. Mater. Interfaces, Vol. 12, No. 25, pp. 28375-28382, 2020.   DOI
24 B. Zavala-Contreras, H. Santacruz-Ortega, A. U. Orozco-Valencia, M. Inoue, K. Ochoa Lara, and R.-E. Navarro, "Optical Anion Receptors with Urea/Thiourea Subunits on a TentaGel Support", ACS omega, Vol. 6, No. 14, pp. 9381-9390, 2021.   DOI
25 J. H. Rouse, "Polymer-assisted dispersion of single-walled carbon nanotubes in alcohols and applicability toward carbon Nanotube/Sol-Gel composite formation", Langmuir, Vol. 21, No. 3, pp. 1055-1061, 2005.   DOI