Fabrication and Properties of Conductive Carbon Fiber/Polyethylene Composite Films Fabricated under High Intensity Electric Fields : Effect of Polymer Sublayer

고전기장을 이용한 도전성 탄소섬유/폴리에틸렌 복합필름의 제조 및 특성 연구 : 고분자 점착하층의 영향

  • Park, Min (Polymer Hybrids Research Center, Korea Institute of Science and Technology) ;
  • Kim, Jun-Kyung (Polymer Hybrids Research Center, Korea Institute of Science and Technology) ;
  • Lim, Soon-Ho (Polymer Hybrids Research Center, Korea Institute of Science and Technology) ;
  • Ko, Moon-Bae (Polymer Hybrids Research Center, Korea Institute of Science and Technology) ;
  • Choe, Chul-Rim (Polymer Hybrids Research Center, Korea Institute of Science and Technology) ;
  • Mironov, V.S. (Metal-Polymer Research Institute of Belarus) ;
  • Bang, Hyo-Jae (Division of Polymer Science and Engineering, Inha University) ;
  • Lee, Kwang-Hee (Division of Polymer Science and Engineering, Inha University)
  • 박민 (한국과학기술연구원 고분자하이브리드센터) ;
  • 김준경 (한국과학기술연구원 고분자하이브리드센터) ;
  • 임순호 (한국과학기술연구원 고분자하이브리드센터) ;
  • 고문배 (한국과학기술연구원 고분자하이브리드센터) ;
  • 최철림 (한국과학기술연구원 고분자하이브리드센터) ;
  • ;
  • 방효재 (인하대학교 화공.고분자.생물공학부) ;
  • 이광희 (인하대학교 화공.고분자.생물공학부)
  • Published : 2000.03.01

Abstract

We investigated the effect of polymer sublayer on volumetric resistivity and tensile strength of carbon fiber (CF)/polyethylene composite films fabricated under high intensity electric fields. The dependence of volumetric resistivity and tensile strength of the films on the polymer sublayer thickness or mass part exhibited complex behavior according to CF content and CF layer density in the films. As the thickness of polymer sublayer increases, two groups of processes at thermo-mechanical forming stage would take effects in the properties of the films. The first group comprises the increase of polymer layer thickness having reduced CF content compared with central or upper part of the film and insufficient wetting of CF resulting in the loosened structure near upper film side. The second group, on the other hand, is the improvement of mobility of molten sublayer leading to better distribution of CF throughout the film thickness and the formation of more compact structure. The different degree of contribution of these two competing processes at varied CF content and CF layer density could explain complex dependence of the film properties on the polymer sublayer. These results are important to optimize the electrical and mechanical properties of highly conductive polymer films, which can be used as electromagnetic interference shielding materials.

고전기장을 이용하여 제조한 도전성 탄소섬유/폴리에틸렌 복합필름에 있어서 고분자 점착하층의 두께가 제조된 필름의 체적비저항과 인장강도에 미치는 효과에 대하여 연구하였다. 탄소섬유(CF) 함량과 CF 층밀도에 따라 제조된 필름의 체적비저항과 인장강도의 점착하층에 대한 의존성의 양상은 복잡하게 나타났다. 이는 점착하층의 증가에 따라서 필름 하층면에 중심부나 위쪽에 비하여 CF 농도가 낮은 절연성 고분자층의 두에가 증가하고 필름 상층면 근처에서는 CF의 함침에 필요한 고분자 매트릭스의 양이 적어져 매트릭스 함침이 불충분하여 기공이 포함된 구조를 형성시키는 효과와 증가된 매트릭스의 유동성을 바탕으로 CF 분산성이 향상되고 동시에 보다 치밀한 구조가 형성되는 두 가지 상반되는 효과의 상대적 기여 정도의 차이를 통하여 설명할 수 있었다. 이들 결과는 전자파 차폐용 고도전성 고분자 차폐필름의 제조에 있어서 전기적 성질과 기계적 성질의 최적화하는데 중요하다.

Keywords

References

  1. Electrical and Magnetic Fields in Polymer Composites Technology Y. I. Voronezhcev;V. A. Goldade;L. S. Pinchuk;V. V. Snezhkov
  2. Higher Electic Fields in Technolgical Processes: Electron-Ion Technology V. I. Popkov
  3. Polymer Composites and Coatings Based on Dispersed Polymers V. A. Dovgyalo;O. R. Yurkevich
  4. Doctor of Sci. Thesis, Metal-Polymer Research Institute Electrophysical Activation of Polymer Materials at Frictional and Electrical Treatment V. S. Mironov
  5. Proc.of IUPAC 32nd Intern. Symp. Macromol T. Itoh;H. Kohyama;T. Konishi
  6. Mem. Fac. Eng. v.18 M. Hozaca;K. Ando
  7. J. Polym. Sci. Pt.B: Polym. Phys v.27 H. Marand;R. S. Stein
  8. Mechanics of Composite Materials v.29 S. F. Zhandarov;V. A. Dovgyalo;E. V. Pisanova;V. S. Mironov
  9. J. Adhesion Sci. Technol. v.8 S. F. Zhandarov;V. A. Dovgyalo;E. V. Pisanova
  10. Polymer Powder Technology L. T. Drzal;S. Padaki;M. N. Vyakarnam;J. F. Fernandes;M. Narkis(ed.);N. Rosenzweig(ed.)
  11. Composites Science and Technology V. S. Mironov;M. Park
  12. Plastics Engineering no.January M. N. Vyakarnam;L. T. Drzal
  13. Proc. Int. Conf. Adv. in Materials & Processing Technol. v.1 V. S. Mironov;O. B. Skryabin;O. R. Yurkevich
  14. Fiber-reinforced Composites P. K. Mallick
  15. Conductive Polymer Composites: Materials, Technology and Applications V. S. Mironov
  16. SAMPE J. v.25 G. M. Knoblach
  17. Physical Fundamentals of the Electroflocation Technology E. N. Bershev
  18. Electroflocation(the deposition of a pile in electric field) E. L. Bershev
  19. Floked Materials, Technolygy and Applications E. L. Barden
  20. Plasticheskie Massy v.3 B. G. Braverman;A. I. Surgucheva;T. G. Sorina;T. A. Konikova;V. S. Korneeva
  21. J. Friction & Wear v.16 V. S. Mironov;O. B. Skryabin;V. A. Dovgyalo;O. R. Yurkevich
  22. Kogyo Zairyo v.47 K. Kozo
  23. Kogyo Zairyo v.42 Y. Istuo
  24. Plastic Technology no.November E. Kiesche
  25. Polym. Comp. v.18 M. Weber;M. R. Kamal
  26. Kino Zairyo v.19 no.5 M. Sugino
  27. Metal-Filled Polymers R. P. Kusy;S. K. Bhattacharya(ed.)
  28. Recent Advances of Polymer Compounds T. Hasegawa