Acknowledgement
이 논문은 부산대학교 기본연구지원사업(2년)에 의하여 연구되었음
References
- H. Furukawa, K. E. Cordova, M. O'Keeffe , O. M. Yaghi, The chemistry and applications of metal-organic frameworks, Science, 341 (2013) 1230444. https://doi.org/10.1126/science.1230444
- H. C. Zhou, J. R. Long, O. M. Yaghi, Introduction to metal-organic frameworks, Chem. Rev., 112 (2012) 673-674. https://doi.org/10.1021/cr300014x
- Y. Yan, T. He, B. Zhao, K. Qi, H. F. Liu, B. Y. Xia, Metal/covalent-organic frameworks-based electrocatalysts for water splitting, J. Mater. Chem. A, 6 (2018) 15905-15926. https://doi.org/10.1039/C8TA05985C
- L. E. Kreno, K. Leong, O. K. Farha, M. Allendorf, R. P. Van Duyne, J. T. Hupp, Metal-organic framework materials as chemical sensors, Chem. Rev., 112 (2012) 1105-1125. https://doi.org/10.1021/cr200324t
- M. X. Wu, Y. W. Yang, Metal-organic framework (MOF)-based drug/cargo delivery and cancer therapy, Adv. Mater., 29 (2017) 1606134. https://doi.org/10.1002/adma.201606134
- H. Li, K. C. Wang, Y. J. Sun, C. T. Lollar, J. L. Li, H. C. Zhou, Recent advances in gas storage and separation using metal-organic frameworks, Mater. Today, 21 (2018) 108-121. https://doi.org/10.1016/j.mattod.2017.07.006
- B. J. Zhu, D. G. Xia, R. Q. Zou, Metal-organic frameworks and their derivatives as bifunctional electrocatalysts, Coord. Chem. Rev., 376 (2018) 430-448. https://doi.org/10.1016/j.ccr.2018.07.020
- B. L. Chen, Z. X. Yang, Y. Q. Zhu, Y. D. Xia, Zeolitic imidazolate framework materials: recent progress in synthesis and applications, J. Mater. Chem. A, 2 (2014) 16811-16831. https://doi.org/10.1039/C4TA02984D
- R. Ahmad, U. A. Khan, N. Iqbal, T. Noor, Zeolitic imidazolate framework (ZIF)-derived porous carbon materials for supercapacitors: an overview, Rsc. Adv., 10 (2020) 43733-43750. https://doi.org/10.1039/d0ra08560j
- J. Zhang, Y. Tan, W. J. Song, Zeolitic imidazolate frameworks for use in electrochemical and optical chemical sensing and biosensing: a review, Microchim. Acta, 187 (2020) 1-23. https://doi.org/10.1007/s00604-019-3921-8
- L. L. Zhang, X. S. Zhao, Carbon-based materials as supercapacitor electrodes, Chem. Soc. Rev., 38 (2009) 2520-2531. https://doi.org/10.1039/b813846j
- M. D. Angione, R. Pilolli, S. Cotrone, M. Magliulo, A. Mallardi, G. Palazzo, L. Sabbatini, D. Fine, A. Dodabalapur, N. Cioffi, L. Torsi, Carbon based materials for electronic bio-sensing, Mater. Today, 14 (2011) 424-433. https://doi.org/10.1016/S1369-7021(11)70187-0
- A. Borenstein, O. Hanna, R. Attias, S. Luski, T. Brousse, D. Aurbach, Carbon-based composite materials for supercapacitor electrodes: a review, J. Mater. Chem. A, 5 (2017) 12653-12672. https://doi.org/10.1039/C7TA00863E
- R. Liu, A. Zhou, X. R. Zhang, J. B. Mu, H. W. Che, Y. M. Wang, T. T. Wang, Z. X. Zhang, Z. K. Kou, Fundamentals, advances and challenges of transition metal compounds-based supercapacitors, Chem. Eng. J., 412 (2021) 128611. https://doi.org/10.1016/j.cej.2021.128611
- S. Kempahanumakkagari, K. Vellingiri, A. Deep, E. E. Kwon, N. Bolan, K. H. Kim, Metal-organic framework composites as electrocatalysts for electrochemical sensing applications, Coord. Chem. Rev., 357 (2018) 105-129. https://doi.org/10.1016/j.ccr.2017.11.028
- M. Wang, J. Yang, K. L. Jia, S. Y. Liu, C. Hu, J. S. Qiu, Boosting supercapacitor performance of graphene by coupling with nitrogen-doped hollow carbon frameworks, Chem-Eur J, 26 (2020) 2897-2903. https://doi.org/10.1002/chem.201904701
- L. L. Zhu, C. Hao, X. H. Wang, Y. N. Guo, Fluffy cotton-like GO/Zn-Co-Ni layered double hydroxides form from a sacrificed template GO/ZIF-8 for high performance asymmetric supercapacitors, ACS Sustain. Chem. Eng., 8 (2020) 11618-11629. https://doi.org/10.1021/acssuschemeng.0c02916
- W. A. Amer, J. Wang, B. Ding, T. Li, A. E. Allah, M. B. Zakaria, J. Henzie, Y. Yamauchi, Physical expansion of layered graphene oxide nanosheets by chemical vapor deposition of metal- organic frameworks and their thermal conversion into nitrogen-doped porous carbons for supercapacitor applications, Chemsuschem, 13 (2020) 1629-1636. https://doi.org/10.1002/cssc.201901436
- L. Wang, C. X. Wang, H. F. Wang, X. Y. Jiao, Y. Ouyang, X. F. Xia, W. Lei, Q. L. Hao, ZIF-8 nanocrystals derived N-doped carbon decorated graphene sheets for symmetric supercapacitors, Electrochim. Acta, 289 (2018) 494-502. https://doi.org/10.1016/j.electacta.2018.09.091
- Z. Li, X. Liu, L. Wang, F. Bu, J. J. Wei, D. Y. Pan, M. H. Wu, Hierarchical 3D allcarbon composite structure modified with N-doped graphene quantum dots for high-performance flexible supercapacitors, Small, 14 (2018) 1801498. https://doi.org/10.1002/smll.201801498
- C. Lu, D. X. Wang, J. J. Zhao, S. Han, W. Chen, A continuous carbon nitride polyhedron assembly for highperformance flexible supercapacitors, Adv. Funct. Mater., 27 (2017) 1606219. https://doi.org/10.1002/adfm.201606219
- F. F. Zhu, W. J. Liu, Y. Liu, W. D. Shi, Construction of porous interface on CNTs@NiCo-LDH core-shell nanotube arrays for supercapacitor applications, Chem. Eng. J., 383 (2020) 123150. https://doi.org/10.1016/j.cej.2019.123150
- D. H. Wang, Y. Chen, H. Q. Wang, P. H. Zhao, W. Liu, Y. Z. Wang, J. L. Yang, N-doped porous carbon anchoring on carbon nanotubes derived from ZIF-8/polypyrrole nanotubes for superior supercapacitor electrodes, Appl. Surf. Sci., 457 (2018) 1018-1024. https://doi.org/10.1016/j.apsusc.2018.07.047
- X. Xu, M. Wang, Y. Liu, Y. Li, T. Lu, L. Pan, In situ construction of carbon nanotubes/nitrogen-doped carbon polyhedra hybrids for supercapacitors, Energy Storage Mater., 5 (2016) 132-138. https://doi.org/10.1016/j.ensm.2016.07.002
- Z. Zhao, S. L. Liu, J. X. Zhu, J. S. Xu, L. Li, Z. Q. Huang, C. Zhang, T. X. Liu, Hierarchical nanostructures of nitrogen-doped porous carbon polyhedrons confined in carbon nanosheets for high-performance supercapacitors, Acs. Appl. Mater. Inter., 10 (2018) 19871-19880. https://doi.org/10.1021/acsami.8b03431
- X. M. Cao, Z. B. Han, Hollow core-shell ZnO@ZIF-8 on carbon cloth for flexible supercapacitors with ultrahigh areal capacitance, Chem. Commun., 55 (2019) 1746-1749. https://doi.org/10.1039/c8cc09847f
- H. Yu, W. J. Zhu, H. Zhou, J. F. Liu, Z. Yang, X. C. Hu, A. H. Yuan, Porous carbon derived from metal-organic framework@graphene quantum dots as electrode materials for supercapacitors and lithium-ion batteries, Rsc. Adv., 9 (2019) 9577-9583. https://doi.org/10.1039/c9ra01488h
- B. Tan, H. Luo, Z. L. Xie, Formation of N-rich hierarchically porous carbon via direct growth ZIF-8 on C3N4 nanosheet with enhancing electrochemical performance, Chemistryselect, 3 (2018) 6440-6449. https://doi.org/10.1002/slct.201800860
- Y. Xie, X. L. Tu, X. Ma, M. Q. Xiao, G. B. Liu, F. L. Qu, R. Y. Dai, L. M. Lu, W. M. Wang, In-situ synthesis of hierarchically porous polypyrrole@ZIF-8/graphene aerogels for enhanced electrochemical sensing of 2,2-methylenebis (4-chlorophenol), Electrochim. Acta, 311 (2019) 114-122. https://doi.org/10.1016/j.electacta.2019.04.132
- Y. Huang, W. F. Lin, T. S. Huang, Z. R. Li, Z. R. Zhang, R. T. Xiao, X. Yang, S. T. Lian, J. S. Pan, J. Ma, W. Wang, L. P. Sun, J. Li, B. O. Guan, Ultrafast response optical microfiber interferometric VOC sensor based on evanescent field interaction with ZIF-8/Graphene oxide nanocoating, Adv. Opt. Mater., 10 (2022) 2101561. https://doi.org/10.1002/adom.202101561
- X. X. Dong, C. X. Xu, S. Lu, R. Wang, Z. L. Shi, Q. N. Cui, T. Y. You, ZIF-8 coupling with reduced graphene oxide to enhance the electrochemical sensing of dopamine, J. Electrochem. Soc., 168 (2021) 116517. https://doi.org/10.1149/1945-7111/ac3ab6
- S. Y. Zhou, J. P. Ji, T. Qiu, L. G. Wang, W. B. Ni, S. Li, W. J. Yan, M. Ling, C. D. Liang, Boosting selective H2 sensing of ZnO derived from ZIF-8 by rGO functionalization, Inorg. Chem. Front., 9 (2022) 599-606. https://doi.org/10.1039/D1QI01374B
- Y. X. Qin, W. T. Ding, R. L. Zhao, ZIF-8-derived ZnTi-LDHs with unique self-supported architecture and corresponding LDHs/rGO hybrid for gas sensor applications, Chem. Phys. Lett., 781 (2021) 138965. https://doi.org/10.1016/j.cplett.2021.138965
- N. Jafari, S. Zeinali, Highly rapid and sensitive formaldehyde detection at room temperature using a ZIF-8/MWCNT nanocomposite, Acs. Omega, 5 (2020) 4395-4402. https://doi.org/10.1021/acsomega.9b03124
- H. X. Li, F. W. Zhu, J. Xiang, F. B. Wang, Q. Liu, X. Q. Chen, In situ growth of ZIF-8 on gold nanoparticles/ magnetic carbon nanotubes for the electrochemical detection of bisphenol A, Anal. Methods, 13 (2021) 2338-2344. https://doi.org/10.1039/D1AY00324K
- D. F. Qin, T. H. Li, X. N. A. Li, J. Feng, T. F. Tang, H. Cheng, A facile fabrication of a hierarchical ZIF-8/MWCNT nanocomposite for the sensitive determination of rutin, Anal. Methods, 13 (2021) 5450-5457. https://doi.org/10.1039/D1AY01421H
- R. J. Guo, H. D. Wang, R. Tian, D. L. Shi, H. Li, Y. Li, H. Z. Liu, The enhanced ethanol sensing properties of CNT@ZnSnO3 hollow boxes derived from Zn-MOF(ZIF-8), Ceram. Int., 46 (2020) 7065-7073. https://doi.org/10.1016/j.ceramint.2019.11.198
- Y. J. Ma, G. H. Xu, F. D. Wei, Y. Cen, Y. S. Ma, Y. Y. Song, X. M. Xu, M. L. Shi, S. Muhammad, Q. Hu, A dual-emissive fluorescent sensor fabricated by encapsulating quantum dots and carbon dots into metal-organic frameworks for the ratiometric detection of Cu2+ in tap water, J. Mater. Chem. C, 5 (2017) 8566-8571. https://doi.org/10.1039/C7TC01970J
- H. Guo, X. Q. Wang, N. Wu, M. N. Xu, M. Y. Wang, L. W. Zhang, W. Yang, Onepot synthesis of a carbon dots@zeolitic imidazolate framework-8 composite for enhanced Cu2+ sensing, Anal. Methods, 12 (2020) 4058-4063. https://doi.org/10.1039/d0ay01121e
- G. M. Li, N. Lv, J. L. Zhang and J. Z. Ni, MnO2 in situ formed into the pores of C-dots/ZIF-8 hybrid nanocomposites as an effective quencher for fluorescence sensing ascorbic acid, Rsc. Adv., 7 (2017) 16423-16427. https://doi.org/10.1039/C7RA00307B
- X. Chang, K. Li, X. R. Qiao, Y. Xiong, F. J. Xia, Q. Z. Xue, ZIF-8 derived ZnO polyhedrons decorated with biomass derived nitrogen-doped porous carbon for enhanced acetone sensing, Sens. Actuators. B, 330 (2021) 129366. https://doi.org/10.1016/j.snb.2020.129366