DOI QR코드

DOI QR Code

Recent research trend of supercapacitor and chemical sensor using composite of ZIF-8 and carbon-based material

ZIF-8과 탄소기반물질 복합체를 이용한 슈퍼커패시터 및 화학센서의 최신연구동향

  • Kim, Sang Jun (Department of Materials Science and Engineering, Pusan National University) ;
  • Lee, Jae Min (Department of Materials Science and Engineering, Pusan National University) ;
  • Jo, Seung Geun (Department of Materials Science and Engineering, Pusan National University) ;
  • Lee, Eun Been (Department of Materials Science and Engineering, Pusan National University) ;
  • Lee, Seoung-Ki (Department of Materials Science and Engineering, Pusan National University) ;
  • Lee, Jung Woo (Department of Materials Science and Engineering, Pusan National University)
  • 김상준 (부산대학교 재료공학부) ;
  • 이재민 (부산대학교 재료공학부) ;
  • 조승근 (부산대학교 재료공학부) ;
  • 이은빈 (부산대학교 재료공학부) ;
  • 이승기 (부산대학교 재료공학부) ;
  • 이정우 (부산대학교 재료공학부)
  • Received : 2022.02.28
  • Accepted : 2022.03.15
  • Published : 2022.04.30

Abstract

Metal-organic framework (MOF) is one of the representative porous materials composed of metal ions and organic linkers. In spite of many advantages of the MOFs such as high specific surface area and ease of structure control, drawbacks have become obstacles to the practical use of them with poor electrical conductivity and chemical stability. The ZIF-8, which is consisted of zinc and imidazole linker, is one of the solutions to improve the chemical stability issue. In addition, composites using the ZIF-8 and carbonbased materials are widely used to enhance the electrical conductivity. In this regard, supercapacitor is very attractive field for using the composites, because most of carbon-based materials are porous and conductive. Also, for sensor applications, the ZIF-8 composite is suitable material to meet the requirement in terms of the selectivity and sensitivity. This review summarizes recent progress of the composite materials with the ZIF-8 and the carbon-based materials for the supercapacitors and the chemical sensors. In particular, the composites are classified into ZIF-8-graphene, ZIF-8-carbon nanotube and ZIF-8-other carbon-based material.

Keywords

Acknowledgement

이 논문은 부산대학교 기본연구지원사업(2년)에 의하여 연구되었음

References

  1. H. Furukawa, K. E. Cordova, M. O'Keeffe , O. M. Yaghi, The chemistry and applications of metal-organic frameworks, Science, 341 (2013) 1230444. https://doi.org/10.1126/science.1230444
  2. H. C. Zhou, J. R. Long, O. M. Yaghi, Introduction to metal-organic frameworks, Chem. Rev., 112 (2012) 673-674. https://doi.org/10.1021/cr300014x
  3. Y. Yan, T. He, B. Zhao, K. Qi, H. F. Liu, B. Y. Xia, Metal/covalent-organic frameworks-based electrocatalysts for water splitting, J. Mater. Chem. A, 6 (2018) 15905-15926. https://doi.org/10.1039/C8TA05985C
  4. L. E. Kreno, K. Leong, O. K. Farha, M. Allendorf, R. P. Van Duyne, J. T. Hupp, Metal-organic framework materials as chemical sensors, Chem. Rev., 112 (2012) 1105-1125. https://doi.org/10.1021/cr200324t
  5. M. X. Wu, Y. W. Yang, Metal-organic framework (MOF)-based drug/cargo delivery and cancer therapy, Adv. Mater., 29 (2017) 1606134. https://doi.org/10.1002/adma.201606134
  6. H. Li, K. C. Wang, Y. J. Sun, C. T. Lollar, J. L. Li, H. C. Zhou, Recent advances in gas storage and separation using metal-organic frameworks, Mater. Today, 21 (2018) 108-121. https://doi.org/10.1016/j.mattod.2017.07.006
  7. B. J. Zhu, D. G. Xia, R. Q. Zou, Metal-organic frameworks and their derivatives as bifunctional electrocatalysts, Coord. Chem. Rev., 376 (2018) 430-448. https://doi.org/10.1016/j.ccr.2018.07.020
  8. B. L. Chen, Z. X. Yang, Y. Q. Zhu, Y. D. Xia, Zeolitic imidazolate framework materials: recent progress in synthesis and applications, J. Mater. Chem. A, 2 (2014) 16811-16831. https://doi.org/10.1039/C4TA02984D
  9. R. Ahmad, U. A. Khan, N. Iqbal, T. Noor, Zeolitic imidazolate framework (ZIF)-derived porous carbon materials for supercapacitors: an overview, Rsc. Adv., 10 (2020) 43733-43750. https://doi.org/10.1039/d0ra08560j
  10. J. Zhang, Y. Tan, W. J. Song, Zeolitic imidazolate frameworks for use in electrochemical and optical chemical sensing and biosensing: a review, Microchim. Acta, 187 (2020) 1-23. https://doi.org/10.1007/s00604-019-3921-8
  11. L. L. Zhang, X. S. Zhao, Carbon-based materials as supercapacitor electrodes, Chem. Soc. Rev., 38 (2009) 2520-2531. https://doi.org/10.1039/b813846j
  12. M. D. Angione, R. Pilolli, S. Cotrone, M. Magliulo, A. Mallardi, G. Palazzo, L. Sabbatini, D. Fine, A. Dodabalapur, N. Cioffi, L. Torsi, Carbon based materials for electronic bio-sensing, Mater. Today, 14 (2011) 424-433. https://doi.org/10.1016/S1369-7021(11)70187-0
  13. A. Borenstein, O. Hanna, R. Attias, S. Luski, T. Brousse, D. Aurbach, Carbon-based composite materials for supercapacitor electrodes: a review, J. Mater. Chem. A, 5 (2017) 12653-12672. https://doi.org/10.1039/C7TA00863E
  14. R. Liu, A. Zhou, X. R. Zhang, J. B. Mu, H. W. Che, Y. M. Wang, T. T. Wang, Z. X. Zhang, Z. K. Kou, Fundamentals, advances and challenges of transition metal compounds-based supercapacitors, Chem. Eng. J., 412 (2021) 128611. https://doi.org/10.1016/j.cej.2021.128611
  15. S. Kempahanumakkagari, K. Vellingiri, A. Deep, E. E. Kwon, N. Bolan, K. H. Kim, Metal-organic framework composites as electrocatalysts for electrochemical sensing applications, Coord. Chem. Rev., 357 (2018) 105-129. https://doi.org/10.1016/j.ccr.2017.11.028
  16. M. Wang, J. Yang, K. L. Jia, S. Y. Liu, C. Hu, J. S. Qiu, Boosting supercapacitor performance of graphene by coupling with nitrogen-doped hollow carbon frameworks, Chem-Eur J, 26 (2020) 2897-2903. https://doi.org/10.1002/chem.201904701
  17. L. L. Zhu, C. Hao, X. H. Wang, Y. N. Guo, Fluffy cotton-like GO/Zn-Co-Ni layered double hydroxides form from a sacrificed template GO/ZIF-8 for high performance asymmetric supercapacitors, ACS Sustain. Chem. Eng., 8 (2020) 11618-11629. https://doi.org/10.1021/acssuschemeng.0c02916
  18. W. A. Amer, J. Wang, B. Ding, T. Li, A. E. Allah, M. B. Zakaria, J. Henzie, Y. Yamauchi, Physical expansion of layered graphene oxide nanosheets by chemical vapor deposition of metal- organic frameworks and their thermal conversion into nitrogen-doped porous carbons for supercapacitor applications, Chemsuschem, 13 (2020) 1629-1636. https://doi.org/10.1002/cssc.201901436
  19. L. Wang, C. X. Wang, H. F. Wang, X. Y. Jiao, Y. Ouyang, X. F. Xia, W. Lei, Q. L. Hao, ZIF-8 nanocrystals derived N-doped carbon decorated graphene sheets for symmetric supercapacitors, Electrochim. Acta, 289 (2018) 494-502. https://doi.org/10.1016/j.electacta.2018.09.091
  20. Z. Li, X. Liu, L. Wang, F. Bu, J. J. Wei, D. Y. Pan, M. H. Wu, Hierarchical 3D allcarbon composite structure modified with N-doped graphene quantum dots for high-performance flexible supercapacitors, Small, 14 (2018) 1801498. https://doi.org/10.1002/smll.201801498
  21. C. Lu, D. X. Wang, J. J. Zhao, S. Han, W. Chen, A continuous carbon nitride polyhedron assembly for highperformance flexible supercapacitors, Adv. Funct. Mater., 27 (2017) 1606219. https://doi.org/10.1002/adfm.201606219
  22. F. F. Zhu, W. J. Liu, Y. Liu, W. D. Shi, Construction of porous interface on CNTs@NiCo-LDH core-shell nanotube arrays for supercapacitor applications, Chem. Eng. J., 383 (2020) 123150. https://doi.org/10.1016/j.cej.2019.123150
  23. D. H. Wang, Y. Chen, H. Q. Wang, P. H. Zhao, W. Liu, Y. Z. Wang, J. L. Yang, N-doped porous carbon anchoring on carbon nanotubes derived from ZIF-8/polypyrrole nanotubes for superior supercapacitor electrodes, Appl. Surf. Sci., 457 (2018) 1018-1024. https://doi.org/10.1016/j.apsusc.2018.07.047
  24. X. Xu, M. Wang, Y. Liu, Y. Li, T. Lu, L. Pan, In situ construction of carbon nanotubes/nitrogen-doped carbon polyhedra hybrids for supercapacitors, Energy Storage Mater., 5 (2016) 132-138. https://doi.org/10.1016/j.ensm.2016.07.002
  25. Z. Zhao, S. L. Liu, J. X. Zhu, J. S. Xu, L. Li, Z. Q. Huang, C. Zhang, T. X. Liu, Hierarchical nanostructures of nitrogen-doped porous carbon polyhedrons confined in carbon nanosheets for high-performance supercapacitors, Acs. Appl. Mater. Inter., 10 (2018) 19871-19880. https://doi.org/10.1021/acsami.8b03431
  26. X. M. Cao, Z. B. Han, Hollow core-shell ZnO@ZIF-8 on carbon cloth for flexible supercapacitors with ultrahigh areal capacitance, Chem. Commun., 55 (2019) 1746-1749. https://doi.org/10.1039/c8cc09847f
  27. H. Yu, W. J. Zhu, H. Zhou, J. F. Liu, Z. Yang, X. C. Hu, A. H. Yuan, Porous carbon derived from metal-organic framework@graphene quantum dots as electrode materials for supercapacitors and lithium-ion batteries, Rsc. Adv., 9 (2019) 9577-9583. https://doi.org/10.1039/c9ra01488h
  28. B. Tan, H. Luo, Z. L. Xie, Formation of N-rich hierarchically porous carbon via direct growth ZIF-8 on C3N4 nanosheet with enhancing electrochemical performance, Chemistryselect, 3 (2018) 6440-6449. https://doi.org/10.1002/slct.201800860
  29. Y. Xie, X. L. Tu, X. Ma, M. Q. Xiao, G. B. Liu, F. L. Qu, R. Y. Dai, L. M. Lu, W. M. Wang, In-situ synthesis of hierarchically porous polypyrrole@ZIF-8/graphene aerogels for enhanced electrochemical sensing of 2,2-methylenebis (4-chlorophenol), Electrochim. Acta, 311 (2019) 114-122. https://doi.org/10.1016/j.electacta.2019.04.132
  30. Y. Huang, W. F. Lin, T. S. Huang, Z. R. Li, Z. R. Zhang, R. T. Xiao, X. Yang, S. T. Lian, J. S. Pan, J. Ma, W. Wang, L. P. Sun, J. Li, B. O. Guan, Ultrafast response optical microfiber interferometric VOC sensor based on evanescent field interaction with ZIF-8/Graphene oxide nanocoating, Adv. Opt. Mater., 10 (2022) 2101561. https://doi.org/10.1002/adom.202101561
  31. X. X. Dong, C. X. Xu, S. Lu, R. Wang, Z. L. Shi, Q. N. Cui, T. Y. You, ZIF-8 coupling with reduced graphene oxide to enhance the electrochemical sensing of dopamine, J. Electrochem. Soc., 168 (2021) 116517. https://doi.org/10.1149/1945-7111/ac3ab6
  32. S. Y. Zhou, J. P. Ji, T. Qiu, L. G. Wang, W. B. Ni, S. Li, W. J. Yan, M. Ling, C. D. Liang, Boosting selective H2 sensing of ZnO derived from ZIF-8 by rGO functionalization, Inorg. Chem. Front., 9 (2022) 599-606. https://doi.org/10.1039/D1QI01374B
  33. Y. X. Qin, W. T. Ding, R. L. Zhao, ZIF-8-derived ZnTi-LDHs with unique self-supported architecture and corresponding LDHs/rGO hybrid for gas sensor applications, Chem. Phys. Lett., 781 (2021) 138965. https://doi.org/10.1016/j.cplett.2021.138965
  34. N. Jafari, S. Zeinali, Highly rapid and sensitive formaldehyde detection at room temperature using a ZIF-8/MWCNT nanocomposite, Acs. Omega, 5 (2020) 4395-4402. https://doi.org/10.1021/acsomega.9b03124
  35. H. X. Li, F. W. Zhu, J. Xiang, F. B. Wang, Q. Liu, X. Q. Chen, In situ growth of ZIF-8 on gold nanoparticles/ magnetic carbon nanotubes for the electrochemical detection of bisphenol A, Anal. Methods, 13 (2021) 2338-2344. https://doi.org/10.1039/D1AY00324K
  36. D. F. Qin, T. H. Li, X. N. A. Li, J. Feng, T. F. Tang, H. Cheng, A facile fabrication of a hierarchical ZIF-8/MWCNT nanocomposite for the sensitive determination of rutin, Anal. Methods, 13 (2021) 5450-5457. https://doi.org/10.1039/D1AY01421H
  37. R. J. Guo, H. D. Wang, R. Tian, D. L. Shi, H. Li, Y. Li, H. Z. Liu, The enhanced ethanol sensing properties of CNT@ZnSnO3 hollow boxes derived from Zn-MOF(ZIF-8), Ceram. Int., 46 (2020) 7065-7073. https://doi.org/10.1016/j.ceramint.2019.11.198
  38. Y. J. Ma, G. H. Xu, F. D. Wei, Y. Cen, Y. S. Ma, Y. Y. Song, X. M. Xu, M. L. Shi, S. Muhammad, Q. Hu, A dual-emissive fluorescent sensor fabricated by encapsulating quantum dots and carbon dots into metal-organic frameworks for the ratiometric detection of Cu2+ in tap water, J. Mater. Chem. C, 5 (2017) 8566-8571. https://doi.org/10.1039/C7TC01970J
  39. H. Guo, X. Q. Wang, N. Wu, M. N. Xu, M. Y. Wang, L. W. Zhang, W. Yang, Onepot synthesis of a carbon dots@zeolitic imidazolate framework-8 composite for enhanced Cu2+ sensing, Anal. Methods, 12 (2020) 4058-4063. https://doi.org/10.1039/d0ay01121e
  40. G. M. Li, N. Lv, J. L. Zhang and J. Z. Ni, MnO2 in situ formed into the pores of C-dots/ZIF-8 hybrid nanocomposites as an effective quencher for fluorescence sensing ascorbic acid, Rsc. Adv., 7 (2017) 16423-16427. https://doi.org/10.1039/C7RA00307B
  41. X. Chang, K. Li, X. R. Qiao, Y. Xiong, F. J. Xia, Q. Z. Xue, ZIF-8 derived ZnO polyhedrons decorated with biomass derived nitrogen-doped porous carbon for enhanced acetone sensing, Sens. Actuators. B, 330 (2021) 129366. https://doi.org/10.1016/j.snb.2020.129366