Browse > Article
http://dx.doi.org/10.33961/jecst.2020.01648

3D Hierarchical Flower-Like Cobalt Ferrite Nanoclusters-Decorated Cotton Carbon Fiber anode with Improved Lithium Storage Performance  

Meng, Yanshuang (School of Materials Science and Engineering, Lanzhou University of Technology)
Cheng, Yulong (School of Materials Science and Engineering, Lanzhou University of Technology)
Ke, Xinyou (Department of Mechanical and Aerospace Engineering, Case Western Reserve University)
Ren, Guofeng (Department of Mechanical and Aerospace Engineering, Case Western Reserve University)
Zhu, Fuliang (School of Materials Science and Engineering, Lanzhou University of Technology)
Publication Information
Journal of Electrochemical Science and Technology / v.12, no.2, 2021 , pp. 285-295 More about this Journal
Abstract
The inverse spinel Cobalt ferrite (CoFe2O4, CFO) is considered to be a promising alternative to commercial graphite anodes for lithium ion batteries (LIBs). However, the further development of CFO is limited by its unstable structure during battery cycling and low electrical conductivity. In an effort to address the challenge, we construct three-dimensional hierarchical flower-like CFO nanoclusters (CFO NCs)-decorated carbonized cotton carbon fiber (CFO NCs/CCF) composite. This structure is consisted of microfibers and nanoflower cluster composited of CFO nanoparticle, in which CCF can be used as a long-range conductive matrix, while flower-like CFO NCs can provide abundant active sites, large electrode/electrolyte interface, short lithium ion diffusion path, and alleviated structural stress. As anode materials in LIBs, the flower-like CFO NCs/CCF exhibits excellent electrochemical performance. After 100 cycles at a current density of 0.3 A g-1, the CFO NCs/CCF delivers a discharge/charge capacity of 1008/990 mAh g-1. Even at a high current density of 15 A g-1, it still maintains a charge/discharge capacity of 362/361 mAh g-1.
Keywords
Cobalt Ferrite Nanoflowers; Biomass Derived Carbon; Anode; Lithium Ion Batteries;
Citations & Related Records
연도 인용수 순위
  • Reference
1 C. Liao, S. Wu, Chem. Eng. J., 2019, 355, 805-814.   DOI
2 X. Ke, J. M. Prahl, J. I. D. Alexander, J. S. Wainright, T. A. Zawodzinski, R. F. Savinell, Chem. Soc. Rev., 2018, 47(23), 8721-8743.   DOI
3 X. Ke, J. M. Prahl, J. I. D. Alexander, R. F. Savinell, J. Power Sources, 2018, 384, 295-302.   DOI
4 X. Ke, J. I. D. Alexander, J. M. Prahl, R. F. Savinell, J. Power Sources, 2014, 270, 646-657.   DOI
5 G. Ren, M. N. F. Hoque, J. Liu, J. Warzywoda, Z. Fan, Nano Energy, 2016, 21, 162-171.   DOI
6 G. Ren, M. N. F. Hoque, X. Pan, J. Warzywoda, Z. Fan, J. Mater. Chem. A, 2015, 3(20), 10787-10794.   DOI
7 L. Yin, Y. J. Gao, I. Jeon, H. Yang, J.-P. Kim, S. Y. Jeong, C. R. Cho, Chem. Eng. J., 2019, 356, 60-68.   DOI
8 Y. Li, Y. Meng, X. Liu, M. Xiao, Q. Hu, R. Li, X. Ke, G. Ren, F. Zhu, J. Power Sources, 2019, 442, 227256.   DOI
9 G. Ren, S. Li, Z.-X. Fan, J. Warzywoda, Z. Fan, J. Mater. Chem. A, 2016, 4(42), 16507-16515.   DOI
10 K. Cao, L. Jiao, H. Liu, Y. Liu, Y. Wang, Z. Guo, H. Yuan, Adv. Energy Mater., 2015, 5(4), 1401421.   DOI
11 S. Dong, X. Chen, X. Zhang, G. Cui, Coordin. Chem. Rev., 2013, 257(13-14), 1946-1956.   DOI
12 M. Chhowalla, H. S. Shin, G. Eda, L. J. Li, K. P. Loh, H. Zhang, Nat. Chem., 2013, 5(4), 263-275.   DOI
13 P. Zhu, Z. Zhang, P. Zhao, B. Zhang, X. Cao, J. Yu, J. Cai, Y. Huang, Z. Yang, Carbon, 2019, 142, 269-277.   DOI
14 Y. Zhao, X. Li, B. Yan, D. Xiong, D. Li, S. Lawes, X. Sun, Adv. Energy Mater., 2016, 6(8), 1502175.   DOI
15 Y. Qi, B. Liu, L. Zhang, Y. Huo, L. Li, H. Xie, C. Wang, Z. Su, J. Mater. Chem. A, 2017, 5(41), 21994-22003.   DOI
16 Z. Zhang, W. Li, R. Zou, W. Kang, Y. San Chui, M. F. Yuen, C.-S. Lee, W. Zhang, J. Mater. Chem. A, 2015, 3(13), 6990-6997.   DOI
17 Y. Ma, Y. Ma, D. Geiger, U. Kaiser, H. Zhang, G.-T. Kim, T. Diemant, R. J. Behm, A. Varzi, S. Passerini, Nano Energy, 2017, 42, 341-352.   DOI
18 F. Zou, X. Hu, Z. Li, L. Qie, C. Hu, R. Zeng, Y. Jiang, Y. Huang, Adv. Mater., 2014, 26(38), 6622-6628.   DOI
19 X. Xu, H. Tan, K. Xi, S. Ding, D. Yu, S. Cheng, G. Yang, X. Peng, A. Fakeeh, R. V. Kumar, Carbon, 2015, 84, 491-499.   DOI
20 C. T. Cherian, J. Sundaramurthy, M. V. Reddy, P. Suresh Kumar, K. Mani, D. Pliszka, C. H. Sow, S. Ramakrishna, B. V. R. Chowdari, ACS Appl. Mater. Inter., 2013, 5(20), 9957-9963.   DOI
21 L. Hou, R. Bao, Y. Zhang, X. Sun, J. Zhang, H. Dou, X. Zhang, C. Yuan, J. Mater. Chem. A, 2018, 6(37), 17947- 17958.   DOI
22 M. Zhang, M. Jia, J. Alloy. Compd., 2013, 551, 53-60.   DOI
23 S. H. Chung, C. H. Chang, A. Manthiram, Acs Nano, 2016, 10(11), 10462-10470.   DOI
24 W. Cao, W. Wang, H. Shi, J. Wang, M. Cao, Y. Liang, M. Zhu, Nano Res., 2018, 11(3), 1437-1446.   DOI
25 L. Wan, D. Yan, X. Xu, J. Li, T. Lu, Y. Gao, Y. Yao, L. Pan, J. Mater. Chem. A, 2018, 6(48), 24940-24948.   DOI
26 D. Bresser, E. Paillard, R. Kloepsch, S. Krueger, M. Fiedler, R. Schmitz, D. Baither, M. Winter, S. Passerini, Adv. Energy Mater., 2013, 3(4), 513-523.   DOI
27 Z. Zhang, Y. Wang, M. Zhang, Q. Tan, X. Lv, Z. Zhong, F. Su, J. Mater. Chem. A, 2013, 1(25), 7444-7450.   DOI
28 L. Zhang, T. Wei, Z. Jiang, C. Liu, H. Jiang, J. Chang, L. Sheng, Q. Zhou, L. Yuan, Z. Fan, Nano Energy, 2018, 48, 238-247.   DOI
29 X. Li, X. Tian, T. Yang, Y. Song, Y. Liu, Q. Guo, Z. Liu, J. Alloy. Compd., 2018, 735, 2446-2452.   DOI
30 M. Liu, H. Jin, E. Uchaker, Z. Xie, Y. Wang, G. Cao, S. Hou, J. Li, Nanotechnology, 2017, 28(15), 155603.   DOI
31 Z. Xing, Z. Ju, J. Yang, H. Xu, Y. Qian, Nano Res., 2012, 5(7), 477-485.   DOI
32 S. Shankar, M. Kumar, A. K. Ghosh, O. P. Thakur, M. Jayasimhadri, J. Alloy. Compd., 2019, 779, 918-925.   DOI
33 K. Wu, D. Liu, Y. Tang, Electrochim. Acta, 2018, 263, 515-523.   DOI
34 Z. Wang, P. Fei, H. Xiong, C. Qin, W. Zhao, X. Liu, Electrochim. Acta, 2017, 252, 295-305.   DOI
35 C. Zhang, C. Jin, G. Teng, Y. Gu, W. Ma, Chem. Eng. J., 2019, 365, 121-131.   DOI
36 S. J. Yang, S. Nam, T. Kim, J. H. Im, H. Jung, J. H. Kang, S. Wi, B. Park, C. R. Park, J. Am. Chem. Soc., 2013, 135(20), 7394-7397.   DOI
37 S. Li, B. Wang, J. Liu, M. Yu, Electrochim. Acta, 2014, 129, 33-39.   DOI
38 Ruopian Fang , S. Zhao, Pengxiang Hou , Min Cheng , Shaogang Wang , Hui-Ming Cheng , Chang Liu , F. Li, Adv. Mater., 2016, 28(17), 3373-3382.
39 T. Chen, L. Pan, T. Lu, C. Fu, D. H. C. Chua, Z. Sun, J. Mater. Chem. A, 2014, 2(5), 1263-1267.   DOI
40 X. Yao, J. Kong, C. Zhao, D. Zhou, R. Zhou, X. Lu, Electrochim. Acta, 2014, 146, 464-471.   DOI
41 Z. Wang, D. Luan, S. Madhavi, Y. Hu, X. W. Lou, Energy Environ. Sci., 2012, 5(1), 5252-5256.   DOI
42 L. Qie, W. M. Chen, Z. H. Wang, Q. G. Shao, X. Li, L. X. Yuan, X. L. Hu, W. X. Zhang, Y. H. Huang, Adv. Mater., 2012, 24(15), 2047-2050.   DOI
43 S. Zhu, J. Li, X. Deng, C. He, E. Liu, F. He, C. Shi, N. Zhao, Adv. Funct. Mater., 2017, 27(9), 1605017.   DOI
44 D. Li, X. Li, S. Wang, Y. Zheng, L. Qiao, D. He, ACS Appl. Mater. Inter., 2014, 6(1), 648-654.   DOI
45 X. Yao, J. Kong, D. Zhou, C. Zhao, R. Zhou, X. Lu, Carbon, 2014, 79, 493-499.   DOI
46 L. Qu, X. Hou, X. Huang, Q. Liang, Q. Ru, B. Wu, K.- H. Lam, ChemElectroChem, 2017, 4(12), 3148-3155.   DOI
47 C. Gong, Y.-J. Bai, Y.-X. Qi, N. Lun, J. Feng, Electrochim. Acta, 2013, 90, 119-127.   DOI
48 L. Lu, X. Jiao, J. Fan, W. Lei, Y. Ouyang, X. Xia, Z. Xue, Q. Hao, Electrochim. Acta, 2019, 295, 461-471.   DOI
49 D. Cao, Z. Yao, J. Liu, J. Zhang, C. Li, Energy Storage Mater., 2018, 11, 152-160.   DOI
50 F. Liu, X. Cheng, R. Xu, Y. Wu, Y. Jiang, Y. Yu, Adv. Funct. Mater., 2018, 28(18), 1800394.   DOI
51 J. Wang., J. Polleux., J. Lim., B. Dunn., J. Mater. Chem. C, 2007, 111, 14925-14931.
52 J. Wang, C. Wang, M. Zhen, Chem. Eng. J., 2019, 356, 1-10.   DOI