Browse > Article
http://dx.doi.org/10.4313/JKEM.2019.32.2.116

Thermal Characteristics of Silicone Composites for the Application to Heat-Controllable Components  

Kwak, Ho-Du (Division of Advanced Materials Engineering, Dong-Eui University)
Oh, Weontae (Division of Advanced Materials Engineering, Dong-Eui University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.32, no.2, 2019 , pp. 116-121 More about this Journal
Abstract
Hexagonal boron nitride particles (s-hBN) modified with 3-aminopropyl triethoxysilane (APTES) were used for the preparation of silicone composite materials. The microstructure of the composite materials was observed, and the thermal conduction and mechanical characteristics of the composite sheets were studied based on the compositions and microstructures. When a small amount of s-hBN particles was used, the thermal conductivity of the composite improved as a whole, and the tensile strength of the sheet also increased. The thermal conductivity and tensile strength of the composite in which a small amount of carbon fiber was added along with s-hBN were further improved. However, the use of carbon nanotubes with structural characteristics similar to those of carbon fiber resulted in lower thermal conductivity and tensile strength. Elastic silicone composites exhibiting 2.5 W/mK of thermal conductivity and a low hardness are expected to be used as thermally conductive interfacial sheet materials.
Keywords
Silicone composite; Thermal conductivity; Mechanical property; Boron nitride;
Citations & Related Records
연도 인용수 순위
  • Reference
1 C. Y. Hsiesh and S. L. Chung, J. Appl. Polym. Sci., 102, 4734 (2006). [DOI: https://doi.org/10.1002/app.25000]   DOI
2 Y. Nagai and G. C. Lai, J. Ceram. Soc. Jpn., 105, 197 (1997). [DOI: https://doi.org/10.2109/jcersj.105.197]   DOI
3 S. Li, S. Qi, N. Liu, and P. Cao, Thermochim. Acta, 523, 111 (2011). [DOI: https://doi.org/10.1016/j.tca.2011.05.010]   DOI
4 I. Jo, M. T. Pettes, J. Kim, K. Watanabe, T. Taniguchi, Z. Yao, and L. Shi, Nano Lett., 13, 550 (2013). [DOI: https://doi.org/10.1021/nl304060g]   DOI
5 G. H. Lee, Y. J. Yu, C. Lee, C. Dean, K. L. Shepard, P. Kim, and J. Hone, Appl. Phys. Lett., 99, 243114 (2011). [DOI: https://doi.org/10.1063/1.3662043]   DOI
6 Y. He, B. E. Moreira, A. Overson, S. H. Nakamura, C. Bider, and J. F. Briscoe, Thermochim. Acta, 357, 1 (2000). [DOI: https://doi.org/10.1016/S0040-6031(00)00357-9]   DOI
7 L. C. Sim, S. R. Ramanan, H. Ismail, K. N. Seetharamu, and T. J. Goh, Thermochim. Acta, 430, 155 (2005). [DOI: https://doi.org/10.1016/j.tca.2004.12.024]   DOI
8 Y. Shabany, Proc. ITherm 2002. Eighth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (Cat. No.02CH37258) (IEEE, San Diego, USA, 2002) p. 489.
9 J. Kim, Y. D. Kim, D. G. Nam, J. S. Bae, J. H. Yeum, and W. Oh, J. Korean Phys. Soc., 68, 551 (2016). [DOI: https://doi.org/10.3938/jkps.68.551]   DOI
10 W. Zhao, C. Song, and P. E. Pehresson, J. Am. Chem. Soc., 124, 12418 (2002). [DOI: https://doi.org/10.1021/ja027861n]   DOI
11 K. D. Ausman, R. Piner, O. Lourie, R. S. Ruoff, and M. Korobov, J. Phys. Chem. B, 104, 8911 (2000). [DOI: https://doi.org/10.1021/jp002555m]   DOI
12 S. J. Yun, H. G. Im, and J. H. Kim, Polymer, 34, 97 (2010).
13 E. K. Sichel, R. E. Miller, M. S. Abrahams, and C. J. Buiocchi, Phys. Rev. B, 13, 4607 (1976). [DOI: https://doi.org/10.1103/PhysRevB.13.4607]   DOI
14 A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, Nano Lett., 8, 902 (2008). [DOI: https://doi.org/10.1021/nl0731872]   DOI
15 K.M.F. Shahil and A. A. Balandin, Nano Lett., 12, 861 (2012). [DOI: https://doi.org/10.1021/nl203906r]   DOI
16 G. W. Lee, J. Kim, J. Yoon, J. S. Bae, B. C. Shin, I. S. Kim, W. Oh, and M. Ree, Thin Solid Films, 516, 5781 (2008). [DOI: https://doi.org/10.1016/j.tsf.2007.10.071]   DOI