• Title/Summary/Keyword: concentrated load

Search Result 531, Processing Time 0.034 seconds

Finite Element Analysis Approach for the Stress of Digging Part of Garlic Harvesters (유한요소해석을 이용한 마늘 수확기 굴취부의 응력분석)

  • Kim, Kyu-Bong;Lee, Myung-Hee;Kim, Dae-Cheol;Cho, Yongjin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.11
    • /
    • pp.78-86
    • /
    • 2020
  • A stress analysis was performed to verify the stability of the digging part of a garlic harvester. A finite element analysis was performed to examine the distribution and concentrated loads on the digging part of the blade and contact plate. Moreover, the stability and maximum deformation of the digging part were determined. Under a distributed load, the maximum principal stress, total deformation, and minimum safety factor ranged from 64-128 MPa, 0.35-0.70 mm, and 2.9-5.7, respectively. The analysis results for the distribution load indicated that the maximum stress occurred at the center of the blade. In contrast, under the concentrated load, the maximum principal stress, total deformation, and minimum safety factor ranged from 66-247 MPa, 0.35-0.79 mm, 1.48-5.53, respectively. The analysis results for the concentrated load indicated that stress and deformation were larger toward the edge and center, respectively.

A FINITE ELEMENT ANALYSIS ON THE 3-UNIT FIXED PROSTHESIS SUPPORTED WITH A NATURAL TOOTH AND ANGLE VARIABLE IMPLANT (고정성 보철치료에서 골유착성 임프란트의 경사도변화에 따른 변위와 응력에 관한 유한요소적 연구)

  • Ko Hyun;Woo Yi-Hyung;Park Nam-Soo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.31 no.4
    • /
    • pp.580-610
    • /
    • 1993
  • The purpose of this study was to analyse the deflection and stress distribution at the supporting bone and it's superstructure by the alteration of angulation between implant and it's implant abutment. For this study, the free-end saddle case of mandibular first and second molar missing would be planned to restore with fixed prosthesis. So the mandibular second premolar was prepared for abutment, and the cylinder type osseointegrated implant was placed at the site of mandibular second molar for abutment. The finite element stress analysis was applied for this study. 13 two-dimensional FEM models were created, a standard model at $0^{\circ}$ and 12 models created by changing the angulation between implant and implant abutment as increasing the angulation mesially and distally with $5^{\circ}$ unittill $30^{\circ}$. The preprocessing decording, solving and postprocessing procedures were done by using FEM analysis software PATRAN and SUN-SPARC2GX. The deflections and von Mises stresses were calculated under concentrated load (load 1) and distributed load(load 2) at the reference points. The results were as follows : 1. Observing at standard model, the amount of total deflection at the distobuccal cusp-tip of pontic under concentrated load was largest of all, and that at the apex of implant was least of all, and the amount of total deflection at the buccal cusp-tip of second premolar under distributed load was largest of all, and that at the apex of implant was least of all. 2. Increasing the angulation mesially or distally, the amounts of total deflection were increased or decreased according to the reference points. But the order according to the amount of total deflection was not changed except apex of second premolar and central fossa of implant abutment under concentrated load during distal inclination. 3. Observing at standard model, the von Mises stress at the distal joint of pontic under concentrated load was largest of all, and that at the apex of implant was least of all. The von Mises stress at the distal margin of second premolar under distributed load was largest of all, and that at the apex of Implant was least of ail. 4. Increasing the angulation of implant mesially, the von Mises stresses at the mesial crest of implant were increased under concentrated load and distributed load, but those were increased remarkably under distributed load and so that at $30^{\circ}$ mesial inclination was largest of all. 5. Increasing the angulation of implant distally, the von Mises stresses at the distal crest of implant were increased remarkably under concentrated load and distributed load, and so those at $30^{\circ}$ distal inclination were largest of all.

  • PDF

Plastic collapse behaviour of statically indeterminate beams with a crack under concentrated load (집중하중하의 균열을 갖는 부정정보의 소성붕괴거동)

  • 남기우
    • Journal of Ocean Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.67-74
    • /
    • 1996
  • The paper focuse on the effect of a crack subjects to collaspe behabiors of statically indeterminate beams under concentrated load. Through the experiment and calculation, it was revealed that the collaspe load of statically indeterminate beams is much higher than that of statically determinate beams. The cumulative AE event counts of statically determinate beams was less than that of statically indeterminate beams, and the center notch beams sas revealed less than that of the side notch beams.

  • PDF

An analytical study of stresses in a square flat plate subjected to a concentrated load using the three-dimensional theory of elasticity (集中荷重을 받는 正方形 平板의 三次元 彈性理論에 의한 應力解析)

  • 양인영;정태권;이상호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.3
    • /
    • pp.323-329
    • /
    • 1989
  • In the stress analysis of plate, Classical plate theories are generally used. But, in applying these theories the stresses underneath the concentrated load point cannot be analyzed because the solution of stress fails to converge. In this paper, therefore, an attempt is made to analyze the stresses directly underneath the concentrated load point for a supported square plate by using the three dimensional theory of elasticity and the potential theory of displacement on the supposition that uniformly distributed load acts on the central part of it. In order to clarify the validity of the theoretical analysis, experiments for strain are carride out with a square plate. It is shown that these theoretical results are in close agreement with experimental results. Specially, this analysis is in a good agreement with actual phenomenon in case of the thick plate.

Non-Linear Behavior of Shear Deformable Simple Beam with a Concentrated Load (전단변형을 고려한 집중하중을 받는 단순보의 비선형 거동)

  • 이병구;이태은;안대순;김권식
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.53-60
    • /
    • 2003
  • This paper explores the governing differential equations for the non-linear behavior of shear deformable simple beam with a concentrated load. In order to apply the Bernoulli-Euler beam theory to simple beam, the bending moment equation on any point of the elastica is obtained by concentrated load. The Runge-Kutta and Regula-Felsi methods, respectively, are used to integrate the governing differential equations and to compute the beam's rotation at the left end of the beams. The characteristic values of deflection curves for various load parameters are calculated and discussed

  • PDF

Inner Evaporative Cooling Wind Power Generator with Non-overlapping Concentrated Windings

  • Li, Wang;Wang, Haifeng
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.1
    • /
    • pp.15-19
    • /
    • 2014
  • As the space of the wind power generator stator end is limited, it is difficult for us to place the inner evaporative cooling system in it. We use the non-overlapping concentrated windings scheme to solve the placing and cooling problem. The characteristic of a 5MW direct-driven permanent magnet generator with non-overlapping concentrated windings were analyzed under no-load, rating-load and short-circuit by (Finite Element Method) FEM for verification of design. We studied the connection methods of the stator windings and designed the end connection member. The heat dissipation of the stator end was simulated by FEM, the result showed that the end cooling could satisfy the wind generator operation needs. These results show that the direct-driven permanent magnet wind power generators with non-overlapping concentrated windings and inner evaporative cooling system can solve the cooling problem of wind power generator, and obtain good performance at the same time.

Out-of-plane performance of infill masonry walls reinforced with post-compressed wedges under lateral-concentrated push load

  • Sanghee Kim;Ju-Hyun Mun;Jun-Ryeol Park;Keun-Hyeok Yang;Jae-Il Sim
    • Earthquakes and Structures
    • /
    • v.26 no.6
    • /
    • pp.489-499
    • /
    • 2024
  • Infill masonry walls are vulnerable to lateral loads, including seismic, wind, and concentrated push loads. Various strengthening metal fittings have been proposed to improve lateral load resistance, particularly against seismic loads. This study introduces the use of post-compressed wedges as a novel reinforcement method for infill masonry walls to enhance lateral load resistance. The resistance of the infill masonry wall against lateral-concentrated push loads was assessed using an out-of-plane push-over test on specimens sized 2,300×2,410×190 mm3. The presence or absence of wedges and wedge spacing were set as variables. The push-over test results showed that both the unreinforced specimen and the specimen reinforced with 300 mm spaced wedges toppled, while the specimen reinforced with 100 mm spaced wedges remained upright. Peak loads were measured to be 0.74, 29.77, and 5.88 kN for unreinforced specimens and specimens reinforced with 100 mm and 300 mm spaced wedges, respectively. Notably, a tighter reinforcement spacing yielded a similar strength, as expected, which was attributed to the increased friction force between the masonry wall and steel frame. The W-series specimens exhibited a trend comparable to that of the displacement ductility ratio. Overall, the findings validate that post-compressed wedges improve the out-of-plane strength of infill masonry walls.

Vibration analysis of the plates subject to dynamic concentrated loads by using spectral element method (스펙트럴요소법을 이용한 동적집중하중을 받는 평판의 진동해석)

  • Lee, Joon-Keun;Lee, U-sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.3
    • /
    • pp.635-643
    • /
    • 1998
  • A spectral element method(SEM) is introduced for the vibration analysis of a rectangular plate subject to dynamic concentrated loads. First, the spectral plate element is derived from the relations between the forces and displacements along the two opposite edges of plate element. The global spectral matrix equation is then formulated by assembling two spectral plate elements so that the dynamic concentrated load is located at the connection nodal line between two plate elements. the concentrated load is then spatially Fourier transformed in the direction of the connection nodal line to transform the two-dimensional plate problem into a simplified equivalent one-dimensional beam-like problem. We may benefit from these procedures in that the spectral results from the present SEM is compared with the exact analytical solutions to prove the remarkable accuracy of the present SEM, while this is not true for conventional finite element solutions, especially at high frequency.

Vibration Analysis of Elastic Beams Subjected to Moving Load (이동하는 동적하중을 받는 탄성보의 진동해석)

  • 윤일성;송오섭
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.408-413
    • /
    • 1997
  • The linear dynamic response of a simply supported uniform beam under a moving load of constant magnitude is investigated. When the ratio of the moving weight and the structure weight is small, moving object is considered as a concentrated or distributed moving force, that is large external loading can be considered as a concentrated or distributed moving masses. Result from the numerical solutions of the differential equations of motion are shown graphically. Moreover, when considering the maximum deflection for the mid-span of the hewn, the critical speeds of the moving load have been evaluated.

  • PDF

A THREE-DIMENSIONAL FINITE ELEMENT ANALYSIS ON STRESS AND DISPLACEMENT RELATED TO ISTHMUS WIDTH OF GOLD INLAY CAVITY (금인레이 와동의 폭경이 응력분포와 변위에 미치는 영향에 관한 3차원 유한요소법적 연구)

  • Hwang, Ho-Keel;Im, Mi-Kyung
    • Restorative Dentistry and Endodontics
    • /
    • v.19 no.2
    • /
    • pp.384-408
    • /
    • 1994
  • The purpose of this study was to evaluate the fracture resistance of tooth restored with gold inlay. A profound understanding of the isthmus width factor, which is one of the several parameters of cavity designs, would facilitate the appropriate cavity preparation in a specific clinical situation. In this study, the cavities for gold inlay were prepared in maxillary left first premolar. A three-dimensional model was designed using I-DEAS program. The model was composed of 2515- nodes and 2172 isoparametric brick elements. In the model isthmus width was varied into 1/4, 1/3 and 1/2 of intercuspal width respectively, and numeric values of the material properties of enamel, dentin and gold was set. Three types of load : concentrated load, divided load and distributed load was 500N. The empty cavities in the model were also examined using divided load and distributed load. The three - dimensional Finite Element Method was used to analysis the displacement and stress distribution. The results were as follows : 1. All of the experimental models which were filled with gold inlay revealed similar direction of displacement to that of the natural tooth model under the same load type. But in the models with empty cavities, as the isthmus width increased, the degree of displacement increased in the case of divided load type. 2. All experimental models which were filled with gold inlay showed stress concentration at load points, but in the models with empty cavities at divided load type, as isthmus width increased, stress was concentrated at the comer of the pulpal floor. 3. In the models with empty cavities at divided load type, tooth fracture was expected regardless of isthmus width, but all experimental models which were filled with gold inlay after cavity preparation were not susceptible to fracture. 4. In all experimental models which were filled with gold inlay after cavity preparation, displacement patterns were similar under both concentrated and divided load types. In the models with empty cavities, a divided load resulted in a bucco-lingual cuspal displacemenat in both sides, but a distributed load resulted in a lingual displacement of the tooth.

  • PDF