DOI QR코드

DOI QR Code

Out-of-plane performance of infill masonry walls reinforced with post-compressed wedges under lateral-concentrated push load

  • Sanghee Kim (Department of Architectural Engineering, Kyonggi University) ;
  • Ju-Hyun Mun (Department of Architectural Engineering, Kyonggi University) ;
  • Jun-Ryeol Park (Department of Architectural Engineering, Kyonggi University) ;
  • Keun-Hyeok Yang (Department of Architectural Engineering, Kyonggi University) ;
  • Jae-Il Sim (Korea Disaster Prevention Safety Technology Co. Ltd)
  • Received : 2024.03.21
  • Accepted : 2024.04.12
  • Published : 2024.06.25

Abstract

Infill masonry walls are vulnerable to lateral loads, including seismic, wind, and concentrated push loads. Various strengthening metal fittings have been proposed to improve lateral load resistance, particularly against seismic loads. This study introduces the use of post-compressed wedges as a novel reinforcement method for infill masonry walls to enhance lateral load resistance. The resistance of the infill masonry wall against lateral-concentrated push loads was assessed using an out-of-plane push-over test on specimens sized 2,300×2,410×190 mm3. The presence or absence of wedges and wedge spacing were set as variables. The push-over test results showed that both the unreinforced specimen and the specimen reinforced with 300 mm spaced wedges toppled, while the specimen reinforced with 100 mm spaced wedges remained upright. Peak loads were measured to be 0.74, 29.77, and 5.88 kN for unreinforced specimens and specimens reinforced with 100 mm and 300 mm spaced wedges, respectively. Notably, a tighter reinforcement spacing yielded a similar strength, as expected, which was attributed to the increased friction force between the masonry wall and steel frame. The W-series specimens exhibited a trend comparable to that of the displacement ductility ratio. Overall, the findings validate that post-compressed wedges improve the out-of-plane strength of infill masonry walls.

Keywords

Acknowledgement

This work was supported by National Research Foundation of Korea (NRF) Grant (NRF-2021R1I1A2048618 and NRF-2022R1A4A5028239).

References

  1. Abrams, D.P., Angel, R. and Uzarski, J. (1996), "Out-of-plane strength of unreinforced masonry infill panels", Earthq. Spectra, 12(4), 825-44. https://doi.org/10.1193/1.1585912.
  2. Akhoundi, F., Vasconcelos, G. and Lourenco, P. (2018), "Experimental out-of-plane behavior of brick masonry infilled frames", Int. J. Arch. Herit., 18, 1-7. https://doi.org/10.1080/15583058.2018.1529207.
  3. Anil, O., Tatayoglu, M. and Demirhan, M. (2012), "Out-of-plane behavior of unreinforced masonry brick walls strengthened with CFRP strips", Constr. Build. Mater., 35, 614-624. https://doi.org/10.1016/j.conbuildmat.2012.04.058.
  4. ASTM C1314 (2021), Standard Test Method for Compressive Strength of Masonry Prisms, ASTM International, West Conshohocken, PA, USA.
  5. ASTM C140/C140M (2022), Standard Test Methods for Sampling and Testing Concrete Masonry Units and Related Units, ASTM International, West Conshohocken, PA, USA.
  6. ASTM C270 (2010), Standard Specification for Mortar for Unit Masonry, ASTM International, West Conshohocken, PA, USA.
  7. ASTM C39/C39M (2021), Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens, ASTM International, West Conshohocken, PA, USA.
  8. ASTM C90 (2021), Standard Specification for Loadbearing Concrete Masonry, ASTM International, West Conshohocken, PA, USA.
  9. ASTM E519/519M (2021), Standard Test Method for Diagonal Tension (Shear) in Masonry Assemblages, ASTM International, West Conshohocken, PA, USA.
  10. BS 5234-2 (1992), Partitions (Including Matching Linings), Specification for Performance Requirements for Strength and Robustness Including Methods of Test, The British Standards Institution, London, UK.
  11. Dawe, J.L. and Seah, C.K. (1989), "Out-of-plane resistance of concrete masonry infilled panels", Can. J. Civuk Eng., 16(6), 854-64. https://doi.org/10.1139/l89-128.
  12. Derakhshan, H., Dizhur, D., Griffith, M.C. and Ingham, J.M. (2014), "In situ out-of-plane testing of as-built and retrofitted unreinforced masonry walls", J. Struct. Eng., 140(6), 1-46. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000960.
  13. Di Domenico, M., Ricci, P. and Verderame, G.M. (2020), "Experimental assessment of the influence of boundary conditions on the out-of-plane response of unreinforced masonry infill walls", J. Earthq. Eng., 24(6), 881-919. https://doi.org/10.1080/13632469.2018.1453411.
  14. Di Domenico, M., Ricci, P. and Verderame, G.M. (2022), "Experimental assessment of strengthened masonry partitions without arching effect under seismic out-of-plane load", J. Earthq. Eng., 26(9), 4657-4680. https://doi.org/10.1080/13632469.2020.1835754.
  15. Di Trapani, F., Vizzino, A., Tomaselli, G., Sberna, A.P. and Bertagnoli, G. (2022), "A new empirical formulation for the out-of-plane resistance of masonry infills in reinforced concrete frames", Eng. Struct., 266, 114422. https://doi.org/10.1016/j.engstruct.2022.114422.
  16. Flanagan, R.D. and Bennett, R.M. (1999), "Bidirectional behavior of structural clay tile infilled frames", J. Struct. Eng., 125(3), 236-244. https://doi.org/10.1061/(ASCE)0733-9445(1999)125:3(236).
  17. Furtado, A., Rodrigues, H., Arede, A. and Varum, H. (2016), "Experimental evaluation of out-of-plane capacity of masonry infill walls", Eng. Struct., 111, 48-63. https://doi.org/10.1016/j.engstruct.2015.12.013.
  18. Furtado, A., Rodrigues, H., Arede, A. and Varum, H. (2020), "Effect of the panel width support and columns axial load on the infill masonry walls out-of-plane behavior", J. Earthq. Eng., 24(4), 653-681. https://doi.org/10.1080/13632469.2018.1453400.
  19. Hwang, S.H., Kim, S. and Yang, K.H. (2020), "In-plane seismic performance of masonry wall retrofitted with prestressed steel-bar truss", Earthq. Struct., 19(6), 459-469. https://doi.org/10.12989/eas.2020.19.6.459.
  20. Hwang, S.H., Kim, S., Choi, Y.S. and Yang, K.H. (2022), "Out-of-plane lateral load capacity of unreinforced masonry walls", J. Struct. Integr. Maint., 7(4), 217-225. https://doi.org/10.1080/24705314.2022.2088057.
  21. IBC Code (2015), International Building Code, International Code Council, Washington, D.C., USA.
  22. Kakolvand, H., Ghazi, M., Mehrparvar, B. and Parvizi, S. (2021), "Evaluation of a new proposed seismic isolator for masonry walls", Earthq. Struct., 21(4), 317-332. https://doi.org/10.12989/eas.2021.21.4.317.
  23. Khelfi, M. and Kehila, F. (2023), "Enhanced macro element for nonlinear analysis of masonry infilled RC frame structures", Earthq. Struct., 25(3), 177-186. https://doi.org/10.12989/eas.2023.25.3.177.
  24. Klun, M., Antolinc, D. and Bosiljkov, V. (2021), "Out-of-plane experimental study of strengthening slender non-structural masonry walls", Appl. Sci., 11(19), 9098. https://doi.org/10.3390/app11199098.
  25. Lee, J.W. and Choi, K.H. (2023), "A study on the seismic performance of reinforced concrete frames with dry stack masonry wall using concrete block", Earthq. Struct., 24(3), 205-215. https://doi.org/10.12989/eas.2023.24.3.205.
  26. Lee, S.J., Eom, T.S. and Yu, E. (2021), "Investigation of diagonal strut actions in masonry-infilled reinforced concrete frames", Concrete Struct. Mater., 15(6), 1-14. https://doi.org/10.1186/s40069-020-00440-x.
  27. Liberatore, L., AlShawa, O., Marson, C., Pasca, M. and Sorrentino, L. (2020), "Out-of-plane capacity equations for masonry infill walls accounting for openings and boundary conditions", Eng. Struct., 207, 110198. https://doi.org/10.1016/j.engstruct.2020.110198.
  28. Lin, Y., Lawley, D., Wotherspoon, L. and Ingham, J.M. (2016), "Out-of-plane testing of unreinforced masonry walls strengthened using ECC shotcrete", Struct., 7, 33-42. https://doi.org/10.1016/J.ISTRUC.2016.04.005.
  29. Nasiri, E. and Liu, Y. (2020), "Effect of prior in-plane damage on the out-of-plane performance of concrete masonry infills", Eng. Struct., 222, 111-149. https://doi.org/10.1016/j.engstruct.2020.111149.
  30. NCMA (2012), Post-Tensioned Concrete Masonry Wall Design, National Concrete Masonry Association, Herndon, VA, USA.
  31. Pradhan, B., Zizzo, M., Di Trapani, F. and Cavaleri, L. (2022), "Out-of-plane behavior of URM infill: accuracy of available capacity models", J. Struct. Eng., 148(31), 04021292. https://doi.org/10.1061/(ASCE)ST.1943-541X.0003253.
  32. Shi, C., Zhang, J., Liang, H., Xu, H., Liu, F. and Zhao, Y. (2022), "Study on the impact resistance of FRP pasted onto a blastproof partition wall under out-of-plane repeated impact load", Coat., 12(12), 1836. https://doi.org/10.3390/coatings12121836.
  33. TMS 402-13 (2013), Building Code Requirements and Specification for Masonry, The Masonry Society, Longmont, Longmont, CO, USA.
  34. Warjri, T., Marbaniang, D.F. and Marthong, C. (2022), "In-plane behaviour of masonry walls embedding with steel welded wire mesh overlay with mortar", J. Struct. Integr. Maint., 7(3) 177-187. https://doi.org/10.1080/24705314.2022.2048241.