• Title/Summary/Keyword: computer simulations

Search Result 3,392, Processing Time 0.03 seconds

A Molecular Modeling Education System based on Collaborative Virtual Reality (협업 가상현실 기반의 분자모델링 교육 시스템)

  • Kim, Jung-Ho;Lee, Jun;Kim, Hyung-Seok;Kim, Jee-In
    • Journal of the Korea Computer Graphics Society
    • /
    • v.14 no.4
    • /
    • pp.35-39
    • /
    • 2008
  • A computer supported collaborative system provides with a shared virtual workspace over the Internet where its remote users cooperate in order to achieve their goals by overcoming problems caused by distance and time. VRMMS (Virtual Reality Molecular Modeling System) [1] is a VR based collaborative system where biologists can remotely participate in and exercise molecular modeling tasks such as viewing three dimensional structures of molecular models, confirming results of molecular simulations and providing with feedbacks for the next simulations. Biologists can utilize VRMMS in executing molecular simulations. However, first-time users and beginners need to spend some time for studying and practicing in order to skillfully manipulate molecular models and the system. The best way to resolve the problem is to have a face-to-face session of teaching and learning VRMMS. However, it is not practically recommended in the sense that the users are remotely located. It follows that the learning time could last longer than desired. In this paper, we propose to use Second Life [2] combining with VRMMS for removing the problem. It can be used in building a shared workplace over the Internet where molecular simulations using VRMMS can be exercised, taught, learned and practiced. Through the web, users can collaborate with each other using VRMMS. Their avatars and tools of molecular simulations can be remotely utilized in order to provide with senses of 'being there' to the remote users. The users can discuss, teach and learn over the Internet. The shared workspaces for discussion and education are designed and implemented in Second Life. Since the activities in Second Life and VRMMS are designed to realistic, the system is expected to help users in improving their learning and experimental performances.

  • PDF

GRAPE AND PROJECT MILKYWAY

  • MAKINO JUNICHIRO
    • Journal of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.165-168
    • /
    • 2005
  • We overview the GRAPE (GRAvity piPE) project. The goal of the GRAPE project is to accelerate the astrophysical N-body simulations. Since almost all computing time is spent for the evaluation of the gravitational force between particles, we can greatly accelerate many N-body simulations by developing a specialized hardware for the force calculation. In 1989, the first such hardware, GRAPE-1, was completed, with the peak speed of 120 Mflops. In 2003, GRAPE-6 was completed, with the peak speed of 64 Tflops, which is nearly 106 times faster than GRAPE-l and was the fastest computer at that time. In this paper, we review the basic concept of the GRAPE hardwares, the history of the GRAPE project, and two ongoing projects, GRAPE-DR and Project Milkyway.

Modeling and Control of an Electronic-Vacuum Booster for Vehicle Cruise Control

  • Lee, Chankyu;Kyongsu Yi
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.10
    • /
    • pp.1314-1319
    • /
    • 2002
  • A mathematical model and control laws for an Electronic-Vacuum Booster (EVB) for application to vehicle cruise control will be presented. Also this paper includes performance test result of EVB and vehicle cruise control experiments. The pressure difference between the vacuum chamber and the apply chamber is controlled by a PWM-solenoid-valve. Since the pressure at the vacuum chamber is identical to that of the engine intake manifold, the output of the electronic-vacuum booster Is sensitive to engine speed. The performance characteristics of the electronic-vacuum booster have been investigated via computer simulations and vehicle tests. The mathematical model of the electronic-vacuum booster developed in this study and a two-state dynamic engine model have been used in the simulations. It has been shown by simulations and vehicle tests that the EVB-cruise control system can provide a vehicle with good distance control performance in both high speed and low speed stop and go driving situations.

MAGNETIC FIELDS IN STARS AND DISKS

  • VISHNIAC ETHAN T.
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.spc1
    • /
    • pp.201-204
    • /
    • 1996
  • Magnetic fields are thought to playa role in a wide variety of important astrophysical processes, from angular momentum transport and jet formation in accretion disks to corona formation in stars. Unfortunately, the dynamics of magnetic fields in astrophysical plasmas are extremely complicated, and the success of current theoretical models and computer simulations seems to be inversely correlated with the amount of observational detail available to us. Here I will discuss some of the more striking conflicts between numerical simulations and observations, and present an explanation for them based on an important dynamical process which is not adequately modeled in current numerical simulations. These processes will lead to the formation of flux tubes in stars and accretion disks, in accordance with observations. I will discuss some of the implications of flux tube formation for stellar and accretion disk dynamos.

  • PDF

Facture Simulation using Molecular Dynamics on a PC Cluster (PC 클러스터 상에서 분자동역학을 이용한 파괴 모사)

  • Choi, Deok-Kee;Ryu, Han-Kyu
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.252-257
    • /
    • 2001
  • With the help of newly arrived technology such as PC clustering, molecular dynamics (MD) seems to be promising for large-scale materials simulations. A cost-effective cluster is set up using commodity PCs connected over Ethernet with fast switching devices and free software Linux. Executing MD simulations in the parallel sessions makes it possible to carry out large-scale materials simulations at acceptable computation time and costs. In this study, the MD computer code for fracture simulation is modified to comply with MPI (Message Passing Interface) specification, and runs on the PC cluster in parallel mode flawlessly. It is noted that PC clusters can provide a rather inexpensive high-performance computing environment comparing to supercomputers, if properly arranged.

  • PDF

Investigation of Cavitation Models for Steady and Unsteady Cavitating Flow Simulation

  • Tran, Tan Dung;Nennemann, Bernd;Vu, Thi Cong;Guibault, Francois
    • International Journal of Fluid Machinery and Systems
    • /
    • v.8 no.4
    • /
    • pp.240-253
    • /
    • 2015
  • The objective of this paper is to evaluate the applicability of mass transfer cavitation models and determine appropriate numerical parameters for cavitating flow simulations. CFD simulations were performed for a NACA66 hydrofoil at cavitation numbers of 1.49 and 1.00, corresponding to steady sheet and unsteady sheet/cloud cavitating regimes using the Kubota and Merkle cavitation models. The Merkle model was implemented into CFX by User Fortran code. The Merkle cavitation model is found to give some improvements for cavitating flow simulation results for these cases. Turbulence modeling is also found to have an important contribution to the prediction quality of the simulations. The relationship between the turbulence viscosity modification, in order to take into account the local compressibility at the vapor/liquid interfaces, and the predicted numerical results is clarified. The limitations of current cavitating flow simulation techniques are discussed throughout the paper.

Evaluation of the TEXAS-V Fragmentation Models Against Experimental Data

  • Song Jin H.;Park Ik K.;Nilsuwankosit Sunchai
    • Nuclear Engineering and Technology
    • /
    • v.36 no.3
    • /
    • pp.276-284
    • /
    • 2004
  • This paper presents the results of the TEXAS-V computer code simulations of FARO L-14, L-28, and L-33. The old break-up model and new break-up model are tested to compare the respective simulations of each. As these experimental data sets cover a wide range of ambient pressures, sub-cooling of the water pool, and the melt jet diameters, the results of the simulations will be beneficial in assessing the TEXAS-V code's capability to predict the steam explosion phenomena in a prototypical reactor case. The current model was found to have some deficiencies, and the modules for the fragmentation, the equation of state, and the interfacial area for each flow regime in TEXAS-V were improved for the simulation of FARO L28 and FARO L-33.

Molecular Dynamics Simulations Study on Surface Polishing by Spherical Abrasive (구형 연마재에 의한 표면 연마에 관한 분자동역학 시뮬레이션 연구)

  • Park, Byung-Heung;Kang, Jeong-Won
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.4
    • /
    • pp.47-51
    • /
    • 2011
  • We investigated the substrate surface polishing by the spherical rigid abrasive under the compression using classical molecular dynamics modeling. We performed three-dimensional molecular dynamic simulations using the Morse potential functions for the various slide-to-roll ratios, from 0 to 1, and then, the compressive forces acting on the spherical rigid abrasive were calculated as functions of the time and the slide-to-roll ratio. The friction coefficients obtained from the classical molecular dynamics simulations were compared to those obtained from the experiments; and found that the molecular dynamic simulation results with the slide-to-roll ratio of 0 value were in good agreement with the experimental results.