• Title/Summary/Keyword: computed tomography image

Search Result 966, Processing Time 0.032 seconds

The accuracy of the imaging reformation of cone beam computed tomography for the assessment of bone defect healing (골결손부 치유과정에서 cone beam형 전산화단층영상의 정확도)

  • Kang, Ho-Duk;Kim, Gyu-Tae;Choi, Yong-Suk;Hwang, Eui-Hwan
    • Imaging Science in Dentistry
    • /
    • v.37 no.2
    • /
    • pp.69-77
    • /
    • 2007
  • Purpose: To evaluate the accuracy of the imaging reformation of cone beam computed tomography for the assessment of bone defect healing in rat model. Materials and Methods: Sprague-Dawley strain rats weighing about 350 gms were selected. Then critical size bone defects were done at parietal bone with implantation of collagen sponge. The rats were divided into seven groups of 3 days, 1 week, 2 weeks, 3 weeks, 4 weeks, 6 weeks, and 8 weeks. The healing of surgical defect was assessed by multi planar reconstruction (MPR) images and three-dimensional (3-D) images of cone beam computed tomography, compared with soft X-ray radiograph and histopathologic examination. Results: MPR images and 3-D images showed similar reformation of the healing amount at 3 days, 1 week, 2 weeks, and 8 weeks, however, lower reformation at 3 weeks, 4 weeks, and 6 weeks. According to imaging-based methodologies, MPR image revealed similar reformation of the healing amount than 3-D images compare with soft X-ray image. Among the four threshold values for 3-D images, 400-500 HU revealed similar reformation of the healing amount. Histopathologic examination confirmed the newly formed trabeculation correspond with imaging-based methologies. Conclusion: MPR images revealed higher accuracy of the imaging reformation of cone beam computed tomography and cone beam computed tomography is a clinically useful diagnostic tool for the assessment of bone defect healing.

  • PDF

Improvement of signal and noise performance using single image super-resolution based on deep learning in single photon-emission computed tomography imaging system

  • Kim, Kyuseok;Lee, Youngjin
    • Nuclear Engineering and Technology
    • /
    • v.53 no.7
    • /
    • pp.2341-2347
    • /
    • 2021
  • Because single-photon emission computed tomography (SPECT) is one of the widely used nuclear medicine imaging systems, it is extremely important to acquire high-quality images for diagnosis. In this study, we designed a super-resolution (SR) technique using dense block-based deep convolutional neural network (CNN) and evaluated the algorithm on real SPECT phantom images. To acquire the phantom images, a real SPECT system using a99mTc source and two physical phantoms was used. To confirm the image quality, the noise properties and visual quality metric evaluation parameters were calculated. The results demonstrate that our proposed method delivers a more valid SR improvement by using dense block-based deep CNNs as compared to conventional reconstruction techniques. In particular, when the proposed method was used, the quantitative performance was improved from 1.2 to 5.0 times compared to the result of using the conventional iterative reconstruction. Here, we confirmed the effects on the image quality of the resulting SR image, and our proposed technique was shown to be effective for nuclear medicine imaging.

Occlusion-based Direct Volume Rendering for Computed Tomography Image

  • Jung, Younhyun
    • Journal of Multimedia Information System
    • /
    • v.5 no.1
    • /
    • pp.35-42
    • /
    • 2018
  • Direct volume rendering (DVR) is an important 3D visualization method for medical images as it depicts the full volumetric data. However, because DVR renders the whole volume, regions of interests (ROIs) such as a tumor that are embedded within the volume maybe occluded from view. Thus, conventional 2D cross-sectional views are still widely used, while the advantages of the DVR are often neglected. In this study, we propose a new visualization algorithm where we augment the 2D slice of interest (SOI) from an image volume with volumetric information derived from the DVR of the same volume. Our occlusion-based DVR augmentation for SOI (ODAS) uses the occlusion information derived from the voxels in front of the SOI to calculate a depth parameter that controls the amount of DVR visibility which is used to provide 3D spatial cues while not impairing the visibility of the SOI. We outline the capabilities of our ODAS and through a variety of computer tomography (CT) medical image examples, compare it to a conventional fusion of the SOI and the clipped DVR.

Computed Tomography and Quality Management (컴퓨터단층촬영장치와 품질관리)

  • Cho, Pyong Kon
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.3
    • /
    • pp.221-233
    • /
    • 2020
  • CT(computed tomography, CT) examinations is one of the most useful diagnostic equipment for identifying information in the human body in diagnostic radiology. Recently, the number of CT scans is increasing every year due to the high reliability of CT scans. Increasing the number of tests will accelerate the aging of CT devices, which is why the importance of quality management for CT devices is on the rise. Particularly in CT, quality management refers to a behavior of figuring out and correcting all sorts of hindrance factors that can cause all the problems related to the equipment associated with the diminishment of diagnosed area due to the reduction of image quality in clinical imaging in advance and maintaining a consistent level of image quality and obtaining a proper image. Here, these researchers aim to summarize and report the general contents of quality management in CT.

Influence of Iodinated Magnetic Resonance Contrast Media and Isotope 99mTc on Changes of Computed Tomography Number

  • Kim, Sang-Beom;Lee, Jin-Hyeok;Ahn, Jae-Ouk;Cho, Jae-Hwan
    • Journal of Magnetics
    • /
    • v.20 no.3
    • /
    • pp.302-307
    • /
    • 2015
  • The purpose of the study was to identify how isotope and magnetic resonance imaging (MRI) contrast media impact on noise to computed tomography (CT) examination. For the study, divide the phantoms to two groups: 1) saline, saline + different kinds of contrast agent without $^{99m}Tc$ administration; 2) $^{99m}Tc$ administration: saline, saline + different kinds of contrast agent with $^{99m}Tc$ administration. CT contrast agent was used for Iopamidol$^{(R)}$ and Dotarem. And MRI contrast agent was used for Primovist$^{(R)}$ and Gadovist$^{(R)}$. To obtain an image, we used CT scanner. With an obtained image, we set the $1cm^2$ region of interest in the middle of bottle to measure the noise and CT number. As a result, there was no difference in CT number before and after inserting $^{99m}Tc$ into all contrast media including Normal Saline. However, when it comes to Noise, there was a difference before and after inserting $^{99m}Tc$ into every contrast media except MRI contrast media such as Primovist$^{(R)}$ and Gadovist$^{(R)}$.

Analysis of Secondary Battery Based on Image Processing of Computed Tomography (CT 기반 영상처리를 이용한 이차전지의 분석)

  • Jea-Seok Oh;Sang-Yeol Lee;Yoon-Gi Yang;Keun-Ho Rew
    • Journal of Information Technology Applications and Management
    • /
    • v.29 no.6
    • /
    • pp.13-21
    • /
    • 2022
  • In this study, we presented a method to inspect the mechanical defects of 4680 type lithium-ion batteries through image processing method. The raw X-ray images are filtered with CLAHE, then Radon inverse transformations are calculated to reconstruct 3D computed tomography of the battery. Using Haar-cascade, the ROI is targeted automatically, and the template matchings are applied twice. The variations of contrast between template and background show the appropriate values for detecting tabs. It was shown that the proposed algorithm can detect all the tab inside the battery and the distances between tabs. Finally, we successfully found the geometrical defects of battery.

Three Dimensional Computed Tomography in the Assessment of Subtle Fracture in Dogs (컴퓨터단층촬영에서 3차원 재구성 영상을 통한 개의 골절 진단)

  • 이기창;권정국;송경진;최민철
    • Journal of Veterinary Clinics
    • /
    • v.20 no.4
    • /
    • pp.523-526
    • /
    • 2003
  • Three dimensional computed tomographic images were obtained in two cases with trauma. The first case of a 3 year-old male Maltese, with ataxia and head tilting due to head trauma was referred to veterinary medical teaching hospital, Seoul National University. Remarkable findings were not found on survey radiographs. With the help of three-dimensional reconstruction computed tomographic imaging, parietal and occipital bone fracture was identified. The second case of 4 month-old female Yorkshire terrier with left forelimb lameness was referred right after trauma. Survey radiography showed obvious incongruity of the elbow joint. Lateral and medial condyle of the left humerus fracture and lateral displacement of the left ulna were apparent in three-dimensional computed tomographic image. It was considered that three-dimensional computed tomography could be used as an aid modality for the exact evaluation of extends and degree of fracture as well as planning of orthopedic surgery.

Basic principle of cone beam computed tomography (Cone beam형 전산화단층영상의 원리)

  • Choi Yong-Suk;Kim Gyu-Tae;Hwang Eui-Hwan
    • Imaging Science in Dentistry
    • /
    • v.36 no.3
    • /
    • pp.123-129
    • /
    • 2006
  • The use of computed tomography for dental procedures has increased recently. Cone beam computed tomography (CBCT) systems have been designed for imaging hard tissues of the dentomaxillofacial region. CBCT is capable of providing high resolution in images of high diagnostic quality. This technology allows for 3-dimensional representation of the dentomaxillofacial skeleton with minimal distortion, but at lower equipment cost, simpler image acquisition and lower patient dose. Because this technology produces images with isotropic sub-millimeter spatial resolution, it is ideally suited for dedicated dentomaxillofacial imaging. In this paper, we provide a brief overview of cone beam scanning technology and compare it with the fan beam scanning used in conventional CT and the basic principles of currently available CBCT systems.

  • PDF

New evolution of cone-beam computed tomography in dentistry: Combining digital technologies

  • Jain, Supreet;Choudhary, Kartik;Nagi, Ravleen;Shukla, Stuti;Kaur, Navneet;Grover, Deepak
    • Imaging Science in Dentistry
    • /
    • v.49 no.3
    • /
    • pp.179-190
    • /
    • 2019
  • Panoramic radiographs and computed tomography (CT) play a paramount role in the accurate diagnosis, treatment planning, and prognostic evaluation of various complex dental pathologies. The advent of cone-beam computed tomography (CBCT) has revolutionized the practice of dentistry, and this technique is now considered the gold standard for imaging the oral and maxillofacial area due to its numerous advantages, including reductions in exposure time, radiation dose, and cost in comparison to other imaging modalities. This review highlights the broad use of CBCT in the dentomaxillofacial region, and also focuses on future software advancements that can further optimize CBCT imaging.

A Review of Organ Dose Calculation Tools for Patients Undergoing Computed Tomography Scans

  • Lee, Choonsik
    • Journal of Radiation Protection and Research
    • /
    • v.46 no.4
    • /
    • pp.151-159
    • /
    • 2021
  • Background: Computed tomography (CT) is one of the crucial diagnostic tools in modern medicine. However, careful monitoring of radiation dose for CT patients is essential since the procedure involves ionizing radiation, a known carcinogen. Materials and Methods: The most desirable CT dose descriptor for risk analysis is the organ absorbed dose. A variety of CT organ dose calculators currently available were reviewed in this article. Results and Discussion: Key common elements included in CT dose calculators were discussed and compared, such as computational human phantoms, CT scanner models, organ dose database, effective dose calculation methods, tube current modulation modeling, and user interface platforms. Conclusion: It is envisioned that more research needs to be conducted to more accurately map CT coverage on computational human phantoms, to automatically segment organs and tissues for patient-specific dose calculations, and to accurately estimate radiation dose in the cone beam computed tomography process during image-guided radiation therapy.