Browse > Article
http://dx.doi.org/10.9717/JMIS.2018.5.1.35

Occlusion-based Direct Volume Rendering for Computed Tomography Image  

Jung, Younhyun (Bio Standard Inc.)
Publication Information
Journal of Multimedia Information System / v.5, no.1, 2018 , pp. 35-42 More about this Journal
Abstract
Direct volume rendering (DVR) is an important 3D visualization method for medical images as it depicts the full volumetric data. However, because DVR renders the whole volume, regions of interests (ROIs) such as a tumor that are embedded within the volume maybe occluded from view. Thus, conventional 2D cross-sectional views are still widely used, while the advantages of the DVR are often neglected. In this study, we propose a new visualization algorithm where we augment the 2D slice of interest (SOI) from an image volume with volumetric information derived from the DVR of the same volume. Our occlusion-based DVR augmentation for SOI (ODAS) uses the occlusion information derived from the voxels in front of the SOI to calculate a depth parameter that controls the amount of DVR visibility which is used to provide 3D spatial cues while not impairing the visibility of the SOI. We outline the capabilities of our ODAS and through a variety of computer tomography (CT) medical image examples, compare it to a conventional fusion of the SOI and the clipped DVR.
Keywords
Direct Volume Rendering; Occlusion; Medical Image Visualization; Computed Tomography;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. Pfister, "The transfer function bake-off," IEEE T. Vis. Comput. Gr., vol. 21, no.3, pp 16-22, 2001.   DOI
2 J. Kniss, G. Kindlmann, C. Hansen, "Interactive volume rendering using multi-dimensional transfer functions and direct manipulation widgets," in Proceedings of IEEE Visualization, San Diego, 2001.
3 C.D. Correa, K. Ma, "The occlusion spectrum for volume classification and visualization," IEEE T. Vis. Comput. Gr., vol. 15, no. 6, pp 1465-72, 2009   DOI
4 J. Kim, W. Cai, S. Eberl, D. Feng, "Real-time volume rendering visualization of dual-modality PET/CT images with interactive fuzzy thresholding segmentation," IEEE T. Info. Tech. Biomed., vol. 11, no. 2, pp 161-9, 2007.   DOI
5 C.D. Correa, K. Ma, "Visibility histograms and visibility-driven transfer functions," IEEE T. Vis. Comput. Gr., vol. 17, no. 2, pp 192-204, 2011.   DOI
6 Y. Jung, J. Kim, S. Eberl, M. Fulham, D. Feng, "Visibility-driven PET-CT visualisation with region of interest (ROI) segmentation," VISUAL COMPUT., vol. 29, no. 6-8, pp 805-15, 2013.   DOI
7 J. Wallis, T. Miller, C. Lerner, E. Kleerup, "Three-dimensional display in nuclear medicine," IEEE Trans Med Imaging, vol. 8, no. 4, pp 297-303, 1989.   DOI
8 W. Heidrich, M. Mccool, J. Stevens, "Interactive Maximum Projection Volume Rendering," in Proceedings of IEEE Visualization, Atlanta, 1995.
9 Y. Sato, N. Shiraga, S. Nakajima, S., Tamura, R. Kikinis, "Local maximum intensity projection (LMIP): a new rendering method for vascular visualization," J Comput Assist Tomogr., vol. 22, no. 6, 1998.
10 S. Bruckner, M.E. Groller, "Instant Volume Visualization using Maximum Intensity Difference Accumulation," COMPUT GRAPH FORUM., vol. 28, no. 3, pp 775-782, 2009.   DOI
11 S. Marchesin, J.M. Dischler, C. Mongenet, "Per-pixel opacity modulation for feature enhancement in volume rendering," IEEE T. Vis. Comput. Gr., vol. 16, no. 4, pp 57-70, 2010.   DOI
12 B. Tang, Z. Zhou, H. Lin, "Depth-based Feature Enhancement for Volume Visualization," in Proceedings of CAD/Graphics, Jinan, 2011.
13 J. Horiguchi, M. Ishifuro, H. Fukuda, Y. Akiyama, K. Ito, "Multiplanar reformat and volume rendering of a multidetector CT scan for path planning a fluoroscopic procedure on Gasserian ganglion block-a preliminary report." Eur J Radiol., vol. 53, no. 2, pp 189-91, 2005.   DOI
14 PT. Johnson, K.M. Horton, E.K. Fishman, "Nonvascular mesenteric disease: utility of multidetector CT with 3D volume rendering," Radiographics., vol. 29, no. 3, pp 721-40, 2009.   DOI
15 P. Kohlmann, S. Bruckner, A. Kanitsar, M.E. Groller, "Contextual picking of volumetric structures," in Proceedings of IEE Pacific Visualization Symposium., Beijing, 2009.
16 A. Weibel, F.M. Frans, D. Foerster, H.C. Hege, "WYSIWYP: What You See Is What You Pick," IEEE T. Vis. Comput. Gr., vol. 18, no. 12, pp 2236-44, 2012.   DOI
17 I. Viola, A. Kanitsar, M. Eduard, "Importance-driven feature enhancement in volume visualization," IEEE T. Vis. Comput. Gr., vol. 11, no. 4, pp 408-18, 2005.   DOI
18 M. Burns, M. Haidacher, W. Wein, I. Viola, M.E. Groller, "Feature Emphasis and Contextual Cutaways for Multimodal Medical Visualization," in Proceedings of Eurographics, Prague, 2007.
19 R.H. Hyndman, Y. Fan, "Sample quantiles in statistical packages," The American Statistician., vol. 50, no. 4, pp 361-5, 1996.
20 J. Stefanie, B. Rens, H. Jennifer, "Probabilistic Linguistics," MIT Press, 2003
21 LIDC, http://imaging.cancer.gov/, 2018.
22 Voreen: Volume Rendering Engine, https://www.uni-muenster.de/Voreen/, 2018.
23 T. Scheuermann, J. Hensley, "Efficient histogram generation using scattering on GPUs," in Proceedings of Interactive 3D graphics and games, Seattle, 2007
24 Osirix, http://www.osirix-viewer.com/datasets/, 2018
25 B. Preim, D. Bartz, "Visualization in medicine theory, algorithms, and application," Morgan Kaufmann Series in Computer Graphics, 2007.
26 H. Kim, J. Song, J. Chon, E. Goh, "Common crus aplasia: diagnosis by 3D volume rendering imaging using 3DFT-CISS sequence," Clin Radiol, vol. 59, no. 9, pp 830-4, 2004.   DOI
27 A. Krueger, C. Kubisch, G. Straub, B. Preim, B, "Sinus endoscopy--application of advanced GPU volume rendering for virtual endoscopy," IEEE T. Vis. Comput. Gr., vol. 14, no. 6, pp 1491-8, 2008.   DOI
28 J. Georgii, M. Eder, L. Kovacs, A. Schneider, M. Dobritz, R. Westermann, "Advanced volume rendering for surgical training environments," in Proceedings of the 21st CARS, Chicago, 2007.