Browse > Article
http://dx.doi.org/10.1016/j.net.2021.01.011

Improvement of signal and noise performance using single image super-resolution based on deep learning in single photon-emission computed tomography imaging system  

Kim, Kyuseok (Department of Intergrative Medicine, Major in Digital Healthcare, Yonsei University)
Lee, Youngjin (Department of Radiological Science, Gachon University)
Publication Information
Nuclear Engineering and Technology / v.53, no.7, 2021 , pp. 2341-2347 More about this Journal
Abstract
Because single-photon emission computed tomography (SPECT) is one of the widely used nuclear medicine imaging systems, it is extremely important to acquire high-quality images for diagnosis. In this study, we designed a super-resolution (SR) technique using dense block-based deep convolutional neural network (CNN) and evaluated the algorithm on real SPECT phantom images. To acquire the phantom images, a real SPECT system using a99mTc source and two physical phantoms was used. To confirm the image quality, the noise properties and visual quality metric evaluation parameters were calculated. The results demonstrate that our proposed method delivers a more valid SR improvement by using dense block-based deep CNNs as compared to conventional reconstruction techniques. In particular, when the proposed method was used, the quantitative performance was improved from 1.2 to 5.0 times compared to the result of using the conventional iterative reconstruction. Here, we confirmed the effects on the image quality of the resulting SR image, and our proposed technique was shown to be effective for nuclear medicine imaging.
Keywords
Nuclear medicine imaging; Single photon emission computed tomography; Super-resolution; Deep learning; Deep convolutional neural network; Quantitative evaluation of image quality;
Citations & Related Records
연도 인용수 순위
  • Reference
1 D. Ravi, A.B. Szczotka, S.P. Pereira, T. Vercauteren, Adversarial training with cycle consistency for unsupervised super-resolution in endomicroscopy, Med. Image Anal. 53 (2019) 123-131.   DOI
2 T. Mamyrbayev, K. Ikematsu, P. Meyer, A. Ershov, A. Momose, J. Mohr, Super-resolution scanning transmission X-ray imaging using single biconcave parabolic refractive lens array, Sci. Rep. 9 (2019), https://doi.org/10.1038/s41598-019-50869-8.   DOI
3 L. Xu, X. Zeng, Z. Huang, W. Li, H. Zhang, Low-dose chest X-ray image super-resolution using generativeadversarial nets with spectral normalization, Biomed. Signal Process Contr. 55 (2020), 101600.   DOI
4 N. Nguyen, P. Milanfar, G. Golub, Efficient generalized cross-validation with applications to parametric image restoration and resolution enhancement, IEEE Transsanctions on Image Processing 10 (2001) 1299-1308.   DOI
5 S.C. Park, M.K. Park, M.G. Kang, Super-resolution image reconstruction: a technical overview, IEEE Signal Process. Mag. (2003) 21-36.
6 M. Irani, S. Peleg, Improving resolution by image registration, CVGIP Graph. Models Image Process. 53 (1991) 231-239.   DOI
7 S. Farsiu, M.D. Robinson, M. Elad, P. Milanfar, Fast and robust multiframe super resolution, IEEE Transsanctions on Image Processing 13 (2004) 1327-1344.   DOI
8 Z. Lin, H. Shum, Fundamental limits of reconstruction-based superresolution algorithms under local translation, IEEE Trans. Pattern Anal. Mach. Intell. 26 (2004) 83-97.   DOI
9 S. Pujals, N. Feiner-Gracia, P. Delcanale, I. Voets, L. Albertazzi, Super- resolution microscopy as a powerful tool to study complex synthetic materials, Nature Reviews Chemistry 3 (2019) 68-84.   DOI
10 J. Sun, J. Sun, Z. Xu, H. Shum, Image super-resolution using gradient profile prior, in: 2008 IEEE Conference on Computer Vision and Pattern Recognition, 2008, pp. 23-28.
11 D. Glasner, S. Bagon, M. Irani, Super-resolution from a single image, in: 2009 IEEE 12th International Conference on Computer Vision, 2009, https://doi.org/10.1109/ICCV.2009.5459271.   DOI
12 J. Yang, Z. Wang, Z. Lin, S. Cohen, T. Huang, Coupled dictionary training for image super-resolution, IEEE Transsanctions on Image Processing 21 (2012) 3467-3478.   DOI
13 J. Kim, J.K. Lee, K.M. Lee, Accurate image super-resolution using very deep convolutional networks, in: 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2016, pp. 1646-1654.
14 J. Yang, Z. Lin, S. Cohen, Fast image super-resolution based on in-place example regression, in: 2013 IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2013, pp. 1059-1066.
15 J. Huang, A. Singh, N. Ahuja, Single image super-resolution from transformed self-exemplars, in: 2015 IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2015, pp. 5197-5206.
16 C. Dong, C.C. Loy, K. He, X. Tang, Image super-resolution using deep convolutional networks, IEEE Trans. Pattern Anal. Mach. Intell. 38 (2016) 295-307.   DOI
17 Z.H. Cho, Y.D. Son, H.K. Kim, K.N. Kim, S.H. Oh, J.Y. Han, I.K. Hong, Y.B. Kim, A fusion PET-MRI system with a high-resolution research tomograph-PET and ultra-high field 7.0 T-MRI for the molecular-genetic imaging of the brain, Proteomics 8 (2008) 1302-1323.   DOI
18 Y.J. Lee, S.J. Park, S.W. Lee, D.H. Kim, Y.S. Kim, H.J. Kim, Comparison of photon counting and conventional scintillation detectors in a pinhole SPECT system for small animal imaging: Monte Carlo simulation studies, J. Kor. Phys. Soc. 62 (2013) 1317-1322.   DOI
19 S. Abbaspour, B. Mahmoudian, J.P. Islamian, Cadmium telluride semiconductor detector for improved spatial and energy resolution radioisotopic imaging, World J. Nucl. Med. 16 (2017) 101-107.   DOI
20 G. Huang, Z. Liu, L.V.D. Maaten, K.Q. Weinberger, Densely connected convolutional networks, in: 2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2017, pp. 2261-2269.
21 S. Sohn, H.J. Shi, S.H. Wang, S.K. Lee, S.Y. Park, J.S. Lee, J.S. Eom, Mycobacterium avium complex infection-related immune reconstitution inflammatory syndrome mimicking lymphoma in an human immunodeficiency virus-infected patient, Infection & Chemotherapy 50 (2018) 350-356.   DOI
22 C.R. Park, Y. Lee, Comparison of PET image quality using simultaneous PET/MR by attenuation correction with various MR pulse sequences, Nuclear Engineering and Technology 51 (2019) 1610-1615.   DOI
23 D.W. Townsend, Multimodality imaging of structure and function, Phys. Med. Biol. 53 (2008) R1-R39.   DOI
24 C.T. Yang, K.K. Ghosh, P. Padmanabhan, O. Langer, J. Liu, D.N.C. Eng, C. Halldin, B. Gulyas, PET-MR and SPECT-MR multimodality probes: development and challenges, Theranostics 8 (2018) 6210-6232.   DOI
25 P. Lecoq, Development of new scintillators for medical applications, Nucl. Instrum. Methods Phys. Res. 809 (2016) 130-139.   DOI
26 F.P. Jansen, J.L. Vanderheyden, The future of SPECT in a time of PET, Nucl. Med. Biol. 34 (2007) 733-735.   DOI
27 H.H. Li, J.R. Votaw, Optimization of PET activation studies based on the SNR measured in the 3-D hoffman brain phantom, IEEE Trans. Med. Imag. 17 (1998) 596-605.   DOI
28 D.W. Townsend, Positron emission tomography/computed tomography, Semin. Nucl. Med. 38 (2008) 152-166.   DOI
29 R. Fattal, Image upsampling via imposed edge statistics, ACM Trans. Graph. 26 (2007), 95-1-8.   DOI
30 W.T. Freeman, E.C. Pasztor, O.T. Carmichael, Learning low-level vision, Int. J. Comput. Vis. 40 (2000) 25-47.   DOI
31 T. Tong, G. Li, X. Liu, Q. Gao, Image super-resolution using dense skip connections, in: 2017 IEEE International Conference on Computer Vision, CVPR, 2017, pp. 4809-4817.
32 K. Kim, M.H. Lee, Y. Lee, Investigation of a blind-deconvolution framework after noise reduction using a gamma camera in nuclear medicine imaging, Nuclear Engineering and Technology 52 (2020) 2594-2600.   DOI
33 P. Zanzonico, Principles of nuclear medicine imaging: planar, SPECT, PET, multi-modality, and autoradiography systems, Radiat. Res. 177 (2012) 349-364.   DOI
34 D.J. Rowland, S.R. Cherry, Small-animal preclinical nuclear medicine instrumentation and methodology, Semin. Nucl. Med. 38 (2008) 209-222.   DOI
35 J. Kim, J.K. Lee, K.M. Lee, Deeply-recursive convolutional network for image super-resolution, in: 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2016, pp. 1637-1645.
36 D. P. Kingma, J. Ba, Adam: a Method for Stochastic Optimization, arXiv preprint (2014) arXiv:1412.6980.
37 S.Y. Chun, J.A. Fessler, Y.K. Dewaraja, Post-reconstruction non-local means filtering methods using CT side information for quantitative SPECT, Phys. Med. Biol. 58 (2013) 6225-6240.   DOI
38 S. Baker, T. Kanade, Limits on super-resolution and how to break them, IEEE Trans. Pattern Anal. Mach. Intell. 24 (2002) 1167-1183.   DOI
39 P. Russo, F.D. Lillo, V. Corvino, P.M. Frallicciardi, A. Sarno, G. Mettivier, CdTe compact gamma camera for coded aperture imaging in radioguided surgery, Phys. Med. 69 (2020) 223-232.   DOI
40 W.T. Freeman, T.R. Jones, E.C. Pasztor, Example-based super-resolution, IEEE Computer Graphics and Applications 22 (2002) 56-65.
41 Y. Zhang, Y. Tian, Y. Kong, B. Zhong, Y. Fu, Residual dense network for image super-resolution, in: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018, pp. 2472-2481.
42 M. Koutalonis, H. Delis, G. Spyrou, L. Costaridou, G. Tzanakos, G. Panayiotakis, Contrast-to-noise ratio in magnification mammography: a Monte Carlo study, Phys. Med. Biol. 52 (2007) 3185-3199.   DOI
43 O.M. Rijal, H. Ebrahimian, N.M. Noor, Determining features for discriminating PTB and normal lungs using phase congruency model, in: Proceedings of 2012 IEEE-EMBS International Conference on Biomedical and Health Informatics, BHI 2012, 2012, pp. 341-344.
44 L. Yu, X. Zhang, Y. Chu, Super-resolution reconstruction algorithm for infrared image with double regular items based on sub-pixel convolution, Appl. Sci. 10 (2020), https://doi.org/10.3390/app10031109.   DOI
45 J.T. Dobbins III, E. Samei, N.T. Ranger, Y. Chen, Intercomparison of methods for image quality characterization. II. Noise power spectrum, Med. Phys. 33 (2006) 1466-1475.   DOI
46 M. Elad, A. Feuer, Restoration of a single superresolution image from several blurred, noisy, and undersampled measured images, IEEE Transsanctions on Image Processing 6 (1997) 1646-1658.   DOI
47 S. Ioffe, C. Szegedy, Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift, arXiv preprint (2015) arXiv:1502.03167.