DOI QR코드

DOI QR Code

A Review of Organ Dose Calculation Tools for Patients Undergoing Computed Tomography Scans

  • Lee, Choonsik (Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health)
  • Received : 2021.04.14
  • Accepted : 2021.06.03
  • Published : 2021.12.31

Abstract

Background: Computed tomography (CT) is one of the crucial diagnostic tools in modern medicine. However, careful monitoring of radiation dose for CT patients is essential since the procedure involves ionizing radiation, a known carcinogen. Materials and Methods: The most desirable CT dose descriptor for risk analysis is the organ absorbed dose. A variety of CT organ dose calculators currently available were reviewed in this article. Results and Discussion: Key common elements included in CT dose calculators were discussed and compared, such as computational human phantoms, CT scanner models, organ dose database, effective dose calculation methods, tube current modulation modeling, and user interface platforms. Conclusion: It is envisioned that more research needs to be conducted to more accurately map CT coverage on computational human phantoms, to automatically segment organs and tissues for patient-specific dose calculations, and to accurately estimate radiation dose in the cone beam computed tomography process during image-guided radiation therapy.

Keywords

Acknowledgement

This research was funded by the intramural research program of the National Institutes of Health, National Cancer Institute, Division of Cancer Epidemiology and Genetics.

References

  1. Pearce MS, Salotti JA, Little MP, McHugh K, Lee C, Kim KP, et al. Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study. Lancet. 2012;380:499-505. https://doi.org/10.1016/S0140-6736(12)60815-0
  2. Mathews JD, Forsythe AV, Brady Z, Butler MW, Goergen SK, Byrnes GB, et al. Cancer risk in 680,000 people exposed to computed tomography scans in childhood or adolescence: data linkage study of 11 million Australians. BMJ. 2013;346:f2360. https://doi.org/10.1136/bmj.f2360
  3. Meulepas JM, Ronckers CM, Smets AM, Nievelstein RJ, Gradowska P, Lee C, et al. Response to Wollschlager, Blettner, and Pokora. J Natl Cancer Inst. 2019;111:1002-1003. https://doi.org/10.1093/jnci/djz062
  4. National Research Council. Health risks from exposure to low levels of ionizing radiation (BEIR VII Phase 2). Washington, DC: National Academies Press; 2006.
  5. McNitt-Gray MF. AAPM/RSNA Physics Tutorial for Residents: topics in CT: radiation dose in CT. Radiographics. 2002;22:1541-1553. https://doi.org/10.1148/rg.226025128
  6. McCollough CH, Cody DD, Edyvean S, Geise R, Gould B, Keat N, et al. The measurement, reporting, and management of radiation dose in CT. Rep AAPM Task Group. 2008;23:1-28.
  7. Simon SL, Kleinerman RA, Ron E, Bouville A. Uses of dosimetry in radiation epidemiology. Radiat Res. 2006;166(1 Pt 2):125-127. https://doi.org/10.1667/RR3385.1
  8. ImPACT. ImPACT CT patient dosimetry calculator. London, UK: ImPACT; 2011.
  9. Kalender WA, Schmidt B, Zankl M, Schmidt M. A PC program for estimating organ dose and effective dose values in computed tomography. Eur Radiol. 1999;9:555-562. https://doi.org/10.1007/s003300050709
  10. Bayer HealthCare LLC. Radiation dose management [Internet]. Whippany, NJ: Bayer HealthCare LLC; c2021 [cited 2021 Jun 8]. Available from: https://www.radiologysolutions.bayer.com/products/dosing-software/radiation-dose-management.
  11. Stamm G, Nagel HD. CT-Expo: ein neuartiges Programm zur Dosisevaluierung in der CT [CT-expo: a novel program for dose evaluation in CT]. Rofo. 2002;174:1570-1576. https://doi.org/10.1055/s-2002-35937
  12. GE Healthcare. DoseWatch: optimized radiation dose management [Internet]. Waukesha, WI: GE Healthcare; c2021 [cited 2021 Jun 8]. Available from: https://www.gehealthcare.com/products/dose-management/dosewatch-dose-monitoring-software-gehealthcare.
  13. Lee C, Kim KP, Bolch WE, Moroz BE, Folio LR. NCICT: a computational solution to estimate organ doses for pediatric and adult patients undergoing CT scans. J Radiol Prot. 2015;35:891-909. https://doi.org/10.1088/0952-4746/35/4/891
  14. Ding A, Gao Y, Liu H, Caracappa PF, Long DJ, Bolch WE, et al. VirtualDose: a software for reporting organ doses from CT for adult and pediatric patients. Phys Med Biol. 2015;60:5601-5625. https://doi.org/10.1088/0031-9155/60/14/5601
  15. Peng Z, Fang X, Yan P, Shan H, Liu T, Pei X, et al. A method of rapid quantification of patient-specific organ doses for CT using deep-learning-based multi-organ segmentation and GPU-accelerated Monte Carlo dose computing. Med Phys. 2020;47:2526-2536. https://doi.org/10.1002/mp.14131
  16. Xu XG. An exponential growth of computational phantom research in radiation protection, imaging, and radiotherapy: a review of the fifty-year history. Phys Med Biol. 2014;59:R233-302. https://doi.org/10.1088/0031-9155/59/18/R233
  17. Valentin J. Basic anatomical and physiological data for use in radiological protection: reference values: ICRP Publication 89. Ann ICRP. 2002;32:1-277. https://doi.org/10.1016/S0146-6453(03)00002-2
  18. Cristy M. Mathematical phantoms representing children of various ages for use in estimates of internal dose. Oak Ridge, TN: Oak Ridge National Laboratory; 1980.
  19. CT Imaging GmbH. ImpactDose v2.2. Bavaria, Germany: CT Imaging GmbH; 2015.
  20. Petoussi-Henss N, Zanki M, Fill U, Regulla D. The GSF family of voxel phantoms. Phys Med Biol. 2002;47:89-106. https://doi.org/10.1088/0031-9155/47/1/307
  21. Lee C, Lee C, Williams JL, Bolch WE. Whole-body voxel phantoms of paediatric patients: UF Series B. Phys Med Biol. 2006;51: 4649-4661. https://doi.org/10.1088/0031-9155/51/18/013
  22. Veit R, Zankl M, Petoussi N, Mannweiler E, Williams G, Drexler G. Tomographic anthropomorphic models, Part I: Construction technique and description of models of an 8 week old baby and a 7 year old child (No. GSF-3-89). Neuherberg, Germany: Gesellschaft fuer Strahlen- und Umweltforschung; 1989.
  23. Bolch WE, Eckerman KF, Endo A, Hunt JG, Jokisch DW, Kim CH, et al. ICRP Publication 143: paediatric reference computational phantoms. Ann ICRP. 2020;49:5-297.
  24. Lee C, Lodwick D, Hurtado J, Pafundi D, Williams JL, Bolch WE. The UF family of reference hybrid phantoms for computational radiation dosimetry. Phys Med Biol. 2010;55:339-363. https://doi.org/10.1088/0031-9155/55/2/002
  25. Norris H, Zhang Y, Bond J, Sturgeon GM, Minhas A, Tward DJ, et al. A set of 4D pediatric XCAT reference phantoms for multimodality research. Med Phys. 2014;41:033701. https://doi.org/10.1118/1.4864238
  26. Ding A, Mille MM, Liu T, Caracappa PF, Xu XG. Extension of RPI-adult male and female computational phantoms to obese patients and a Monte Carlo study of the effect on CT imaging dose. Phys Med Biol. 2012;57:2441-2459. https://doi.org/10.1088/0031-9155/57/9/2441
  27. Lee C, Liu J, Yao J, Summers R, Folio LR. NCICTX: an organ dose calculator for CT patients with different body sizes. Med Phys. 2018;45(6 Suppl):E690-E690.
  28. Geyer AM, O'Reilly S, Lee C, Long DJ, Bolch WE. The UF/NCI family of hybrid computational phantoms representing the current US population of male and female children, adolescents, and adults: application to CT dosimetry. Phys Med Biol. 2014; 59:5225-5242. https://doi.org/10.1088/0031-9155/59/18/5225
  29. Stabin MG, Watson EE, Cristy M, Ryman JC, Eckerman KF, Davis JL, et al. Mathematical models and specific absorbed fractions of photon energy in the nonpregnant adult female and at the end of each trimester of pregnancy (No. ORNL/TM-12907). Oak Ridge, TN: Oak Ridge National Laboratory; 1995.
  30. Shi C, Xu XG. Development of a 30-week-pregnant female tomographic model from computed tomography (CT) images for Monte Carlo organ dose calculations. Med Phys. 2004;31:2491-2497. https://doi.org/10.1118/1.1778836
  31. Maynard MR, Long NS, Moawad NS, Shifrin RY, Geyer AM, Fong G, et al. The UF Family of hybrid phantoms of the pregnant female for computational radiation dosimetry. Phys Med Biol. 2014;59: 4325-4343. https://doi.org/10.1088/0031-9155/59/15/4325
  32. Lee C, Folio LS. An organ dose calculation tool for fetus at various ages undergoing computed tomography. Proceedings of the Radiological Society of North America (RSNA) 105th Scientific Assembly and Annual Meeting; 2019 Dec 1-6; Chicago, IL.
  33. Gu J, Xu XG, Caracappa PF, Liu B. Fetal doses to pregnant patients from CT with tube current modulation calculated using Monte Carlo simulations and realistic phantoms. Radiat Prot Dosimetry. 2013;155:64-72. https://doi.org/10.1093/rpd/ncs312
  34. Lee C, Kim KP, Long DJ, Fisher R, Tien C, Simon SL, et al. Organ doses for reference adult male and female undergoing computed tomography estimated by Monte Carlo simulations. Med Phys. 2011;38:1196-1206. https://doi.org/10.1118/1.3544658
  35. Jarry G, DeMarco JJ, Beifuss U, Cagnon CH, McNitt-Gray MF. A Monte Carlo-based method to estimate radiation dose from spiral CT: from phantom testing to patient-specific models. Phys Med Biol. 2003;48:2645-2663. https://doi.org/10.1088/0031-9155/48/16/306
  36. Staton RJ, Lee C, Lee C, Williams MD, Hintenlang DE, Arreola MM, et al. Organ and effective doses in newborn patients during helical multislice computed tomography examination. Phys Med Biol. 2006;51:5151-5166. https://doi.org/10.1088/0031-9155/51/20/005
  37. Gu J, Bednarz B, Caracappa PF, Xu XG. The development, validation and application of a multi-detector CT (MDCT) scanner model for assessing organ doses to the pregnant patient and the fetus using Monte Carlo simulations. Phys Med Biol. 2009;54: 2699-2717. https://doi.org/10.1088/0031-9155/54/9/007
  38. Institute of Physics and Engineering in Medicine. Catalogue of diagnostic x-ray spectra and other data. York, UK: Institute of Physics and Engineering in Medicine; 1997.
  39. Turner AC, Zankl M, DeMarco JJ, Cagnon CH, Zhang D, Angel E, et al. The feasibility of a scanner-independent technique to estimate organ dose from MDCT scans: using CTDIvol to account for differences between scanners. Med Phys. 2010;37:1816-1825. https://doi.org/10.1118/1.3368596
  40. The 2007 Recommendations of the International Commission on Radiological Protection: ICRP publication 103. Ann ICRP. 2007;37:1-332.
  41. Lee C, Morton LM, Berrington de Gonzalez A. A novel method to estimate lymphocyte dose and application to pediatric and young adult CT patients in the United Kingdom. Radiat Prot Dosimetry. 2018;178:116-121. https://doi.org/10.1093/rpd/ncx084
  42. Lee C. How to estimate effective dose for CT patients. Eur Radiol. 2020;30:1825-1827. https://doi.org/10.1007/s00330-019-06625-7
  43. Recommendations of the International Commission on Radiological Protection: ICRP Publication 26. Ann ICRP. 1977;1:1-80. https://doi.org/10.1016/0146-6453(77)90041-0
  44. 1990 Recommendations of the International Commission on Radiological Protection. Ann ICRP. 1991;21:1-201. https://doi.org/10.1016/0146-6453(91)90065-O
  45. Romanyukha A, Folio LR, Lamart S, Simon SL, Lee C. Body size-specific effective dose conversion coefficients for CT scans. Radiat Prot Dosimetry. 2016;172:428-437. https://doi.org/10.1093/rpd/ncv511
  46. Lee C, Flynn MJ, Judy PF, Cody DD, Bolch WE, Kruger RL. Body size-specific organ and effective doses of chest CT screening examinations of the National Lung Screening Trial. Am J Roentgenol. 2017;208:1082-1088. https://doi.org/10.2214/ajr.16.16979
  47. Li X, Segars WP, Samei E. The impact on CT dose of the variability in tube current modulation technology: a theoretical investigation. Phys Med Biol. 2014;59:4525-4548. https://doi.org/10.1088/0031-9155/59/16/4525
  48. McMillan K, Bostani M, Cagnon CH, Yu L, Leng S, McCollough CH, et al. Estimating patient dose from CT exams that use automatic exposure control: Development and validation of methods to accurately estimate tube current values. Med Phys. 2017;44: 4262-4275. https://doi.org/10.1002/mp.12314
  49. Schlattl H, Zankl M, Becker J, Hoeschen C. Dose conversion coefficients for CT examinations of adults with automatic tube current modulation. Phys Med Biol. 2010;55:6243-6261. https://doi.org/10.1088/0031-9155/55/20/013
  50. Schlattl H, Zankl M, Becker J, Hoeschen C. Dose conversion coefficients for paediatric CT examinations with automatic tube current modulation. Phys Med Biol. 2012;57:6309-6326. https://doi.org/10.1088/0031-9155/57/20/6309
  51. Hardy AJ, Angel E, Bostani M, Cagnon CH, McNitt-Gray M. Estimating fetal dose from tube current-modulated (TCM) and fixed tube current (FTC) abdominal/pelvis CT examinations. Med Phys. 2019;46:2729-2743. https://doi.org/10.1002/mp.13499
  52. Lee C, Kuzmin GA, Bae J, Yao J, Mosher E, Folio LR. Automatic mapping of CT scan locations on computational human phantoms for organ dose estimation. J Digit Imaging. 2019;32:175-182. https://doi.org/10.1007/s10278-018-0119-2
  53. Choy G, Khalilzadeh O, Michalski M, Do S, Samir AE, Pianykh OS, et al. Current applications and future impact of machine learning in radiology. Radiology. 2018;288:318-328. https://doi.org/10.1148/radiol.2018171820
  54. Lee C, Liu J, Griffin K, Folio LR, Summers RM. Adult patient-specific CT organ dose estimations using automated segmentations and Monte Carlo simulations. Biomed Phys Eng Express. 2020;6:045016. https://doi.org/10.1088/2057-1976/ab98e6
  55. Sharma S, Kapadia A, Fu W, Abadi E, Segars WP, Samei E. A realtime Monte Carlo tool for individualized dose estimations in clinical CT. Phys Med Biol. 2019;64:215020. https://doi.org/10.1088/1361-6560/ab467f
  56. Chen W, Kolditz D, Beister M, Bohle R, Kalender WA. Fast on-site Monte Carlo tool for dose calculations in CT applications. Med Phys. 2012;39:2985-2996. https://doi.org/10.1118/1.4711748
  57. Ding A, Gu J, Trofimov AV, Xu XG. Monte Carlo calculation of imaging doses from diagnostic multidetector CT and kilovoltage cone-beam CT as part of prostate cancer treatment plans. Med Phys. 2010;37:6199-6204. https://doi.org/10.1118/1.3512791
  58. Ding GX, Coffey CW. Radiation dose from kilovoltage cone beam computed tomography in an image-guided radiotherapy procedure. Int J Radiat Oncol Biol Phys. 2009;73:610-617. https://doi.org/10.1016/j.ijrobp.2008.10.006