Browse > Article
http://dx.doi.org/10.14407/jrpr.2021.00136

A Review of Organ Dose Calculation Tools for Patients Undergoing Computed Tomography Scans  

Lee, Choonsik (Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health)
Publication Information
Journal of Radiation Protection and Research / v.46, no.4, 2021 , pp. 151-159 More about this Journal
Abstract
Background: Computed tomography (CT) is one of the crucial diagnostic tools in modern medicine. However, careful monitoring of radiation dose for CT patients is essential since the procedure involves ionizing radiation, a known carcinogen. Materials and Methods: The most desirable CT dose descriptor for risk analysis is the organ absorbed dose. A variety of CT organ dose calculators currently available were reviewed in this article. Results and Discussion: Key common elements included in CT dose calculators were discussed and compared, such as computational human phantoms, CT scanner models, organ dose database, effective dose calculation methods, tube current modulation modeling, and user interface platforms. Conclusion: It is envisioned that more research needs to be conducted to more accurately map CT coverage on computational human phantoms, to automatically segment organs and tissues for patient-specific dose calculations, and to accurately estimate radiation dose in the cone beam computed tomography process during image-guided radiation therapy.
Keywords
Computed Tomography; Organ Dose; Computational Human Phantoms; Monte Carlo;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Cristy M. Mathematical phantoms representing children of various ages for use in estimates of internal dose. Oak Ridge, TN: Oak Ridge National Laboratory; 1980.
2 CT Imaging GmbH. ImpactDose v2.2. Bavaria, Germany: CT Imaging GmbH; 2015.
3 Petoussi-Henss N, Zanki M, Fill U, Regulla D. The GSF family of voxel phantoms. Phys Med Biol. 2002;47:89-106.   DOI
4 Lee C, Lee C, Williams JL, Bolch WE. Whole-body voxel phantoms of paediatric patients: UF Series B. Phys Med Biol. 2006;51: 4649-4661.   DOI
5 Lee C, Lodwick D, Hurtado J, Pafundi D, Williams JL, Bolch WE. The UF family of reference hybrid phantoms for computational radiation dosimetry. Phys Med Biol. 2010;55:339-363.   DOI
6 Norris H, Zhang Y, Bond J, Sturgeon GM, Minhas A, Tward DJ, et al. A set of 4D pediatric XCAT reference phantoms for multimodality research. Med Phys. 2014;41:033701.   DOI
7 Lee C, Kim KP, Bolch WE, Moroz BE, Folio LR. NCICT: a computational solution to estimate organ doses for pediatric and adult patients undergoing CT scans. J Radiol Prot. 2015;35:891-909.   DOI
8 Ding A, Gao Y, Liu H, Caracappa PF, Long DJ, Bolch WE, et al. VirtualDose: a software for reporting organ doses from CT for adult and pediatric patients. Phys Med Biol. 2015;60:5601-5625.   DOI
9 Peng Z, Fang X, Yan P, Shan H, Liu T, Pei X, et al. A method of rapid quantification of patient-specific organ doses for CT using deep-learning-based multi-organ segmentation and GPU-accelerated Monte Carlo dose computing. Med Phys. 2020;47:2526-2536.   DOI
10 Ding A, Mille MM, Liu T, Caracappa PF, Xu XG. Extension of RPI-adult male and female computational phantoms to obese patients and a Monte Carlo study of the effect on CT imaging dose. Phys Med Biol. 2012;57:2441-2459.   DOI
11 Lee C, Liu J, Yao J, Summers R, Folio LR. NCICTX: an organ dose calculator for CT patients with different body sizes. Med Phys. 2018;45(6 Suppl):E690-E690.
12 Geyer AM, O'Reilly S, Lee C, Long DJ, Bolch WE. The UF/NCI family of hybrid computational phantoms representing the current US population of male and female children, adolescents, and adults: application to CT dosimetry. Phys Med Biol. 2014; 59:5225-5242.   DOI
13 Stabin MG, Watson EE, Cristy M, Ryman JC, Eckerman KF, Davis JL, et al. Mathematical models and specific absorbed fractions of photon energy in the nonpregnant adult female and at the end of each trimester of pregnancy (No. ORNL/TM-12907). Oak Ridge, TN: Oak Ridge National Laboratory; 1995.
14 Maynard MR, Long NS, Moawad NS, Shifrin RY, Geyer AM, Fong G, et al. The UF Family of hybrid phantoms of the pregnant female for computational radiation dosimetry. Phys Med Biol. 2014;59: 4325-4343.   DOI
15 Lee C, Folio LS. An organ dose calculation tool for fetus at various ages undergoing computed tomography. Proceedings of the Radiological Society of North America (RSNA) 105th Scientific Assembly and Annual Meeting; 2019 Dec 1-6; Chicago, IL.
16 Gu J, Xu XG, Caracappa PF, Liu B. Fetal doses to pregnant patients from CT with tube current modulation calculated using Monte Carlo simulations and realistic phantoms. Radiat Prot Dosimetry. 2013;155:64-72.   DOI
17 Lee C, Kim KP, Long DJ, Fisher R, Tien C, Simon SL, et al. Organ doses for reference adult male and female undergoing computed tomography estimated by Monte Carlo simulations. Med Phys. 2011;38:1196-1206.   DOI
18 Institute of Physics and Engineering in Medicine. Catalogue of diagnostic x-ray spectra and other data. York, UK: Institute of Physics and Engineering in Medicine; 1997.
19 Staton RJ, Lee C, Lee C, Williams MD, Hintenlang DE, Arreola MM, et al. Organ and effective doses in newborn patients during helical multislice computed tomography examination. Phys Med Biol. 2006;51:5151-5166.   DOI
20 Gu J, Bednarz B, Caracappa PF, Xu XG. The development, validation and application of a multi-detector CT (MDCT) scanner model for assessing organ doses to the pregnant patient and the fetus using Monte Carlo simulations. Phys Med Biol. 2009;54: 2699-2717.   DOI
21 Turner AC, Zankl M, DeMarco JJ, Cagnon CH, Zhang D, Angel E, et al. The feasibility of a scanner-independent technique to estimate organ dose from MDCT scans: using CTDIvol to account for differences between scanners. Med Phys. 2010;37:1816-1825.   DOI
22 The 2007 Recommendations of the International Commission on Radiological Protection: ICRP publication 103. Ann ICRP. 2007;37:1-332.
23 Lee C, Morton LM, Berrington de Gonzalez A. A novel method to estimate lymphocyte dose and application to pediatric and young adult CT patients in the United Kingdom. Radiat Prot Dosimetry. 2018;178:116-121.   DOI
24 Jarry G, DeMarco JJ, Beifuss U, Cagnon CH, McNitt-Gray MF. A Monte Carlo-based method to estimate radiation dose from spiral CT: from phantom testing to patient-specific models. Phys Med Biol. 2003;48:2645-2663.   DOI
25 Lee C. How to estimate effective dose for CT patients. Eur Radiol. 2020;30:1825-1827.   DOI
26 Bolch WE, Eckerman KF, Endo A, Hunt JG, Jokisch DW, Kim CH, et al. ICRP Publication 143: paediatric reference computational phantoms. Ann ICRP. 2020;49:5-297.
27 Shi C, Xu XG. Development of a 30-week-pregnant female tomographic model from computed tomography (CT) images for Monte Carlo organ dose calculations. Med Phys. 2004;31:2491-2497.   DOI
28 Lee C, Flynn MJ, Judy PF, Cody DD, Bolch WE, Kruger RL. Body size-specific organ and effective doses of chest CT screening examinations of the National Lung Screening Trial. Am J Roentgenol. 2017;208:1082-1088.   DOI
29 Sharma S, Kapadia A, Fu W, Abadi E, Segars WP, Samei E. A realtime Monte Carlo tool for individualized dose estimations in clinical CT. Phys Med Biol. 2019;64:215020.   DOI
30 Romanyukha A, Folio LR, Lamart S, Simon SL, Lee C. Body size-specific effective dose conversion coefficients for CT scans. Radiat Prot Dosimetry. 2016;172:428-437.   DOI
31 Li X, Segars WP, Samei E. The impact on CT dose of the variability in tube current modulation technology: a theoretical investigation. Phys Med Biol. 2014;59:4525-4548.   DOI
32 Veit R, Zankl M, Petoussi N, Mannweiler E, Williams G, Drexler G. Tomographic anthropomorphic models, Part I: Construction technique and description of models of an 8 week old baby and a 7 year old child (No. GSF-3-89). Neuherberg, Germany: Gesellschaft fuer Strahlen- und Umweltforschung; 1989.
33 Recommendations of the International Commission on Radiological Protection: ICRP Publication 26. Ann ICRP. 1977;1:1-80.   DOI
34 National Research Council. Health risks from exposure to low levels of ionizing radiation (BEIR VII Phase 2). Washington, DC: National Academies Press; 2006.
35 Pearce MS, Salotti JA, Little MP, McHugh K, Lee C, Kim KP, et al. Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study. Lancet. 2012;380:499-505.   DOI
36 Mathews JD, Forsythe AV, Brady Z, Butler MW, Goergen SK, Byrnes GB, et al. Cancer risk in 680,000 people exposed to computed tomography scans in childhood or adolescence: data linkage study of 11 million Australians. BMJ. 2013;346:f2360.   DOI
37 Meulepas JM, Ronckers CM, Smets AM, Nievelstein RJ, Gradowska P, Lee C, et al. Response to Wollschlager, Blettner, and Pokora. J Natl Cancer Inst. 2019;111:1002-1003.   DOI
38 McNitt-Gray MF. AAPM/RSNA Physics Tutorial for Residents: topics in CT: radiation dose in CT. Radiographics. 2002;22:1541-1553.   DOI
39 McCollough CH, Cody DD, Edyvean S, Geise R, Gould B, Keat N, et al. The measurement, reporting, and management of radiation dose in CT. Rep AAPM Task Group. 2008;23:1-28.
40 Simon SL, Kleinerman RA, Ron E, Bouville A. Uses of dosimetry in radiation epidemiology. Radiat Res. 2006;166(1 Pt 2):125-127.   DOI
41 ImPACT. ImPACT CT patient dosimetry calculator. London, UK: ImPACT; 2011.
42 Bayer HealthCare LLC. Radiation dose management [Internet]. Whippany, NJ: Bayer HealthCare LLC; c2021 [cited 2021 Jun 8]. Available from: https://www.radiologysolutions.bayer.com/products/dosing-software/radiation-dose-management.
43 Stamm G, Nagel HD. CT-Expo: ein neuartiges Programm zur Dosisevaluierung in der CT [CT-expo: a novel program for dose evaluation in CT]. Rofo. 2002;174:1570-1576.   DOI
44 GE Healthcare. DoseWatch: optimized radiation dose management [Internet]. Waukesha, WI: GE Healthcare; c2021 [cited 2021 Jun 8]. Available from: https://www.gehealthcare.com/products/dose-management/dosewatch-dose-monitoring-software-gehealthcare.
45 Hardy AJ, Angel E, Bostani M, Cagnon CH, McNitt-Gray M. Estimating fetal dose from tube current-modulated (TCM) and fixed tube current (FTC) abdominal/pelvis CT examinations. Med Phys. 2019;46:2729-2743.   DOI
46 Kalender WA, Schmidt B, Zankl M, Schmidt M. A PC program for estimating organ dose and effective dose values in computed tomography. Eur Radiol. 1999;9:555-562.   DOI
47 McMillan K, Bostani M, Cagnon CH, Yu L, Leng S, McCollough CH, et al. Estimating patient dose from CT exams that use automatic exposure control: Development and validation of methods to accurately estimate tube current values. Med Phys. 2017;44: 4262-4275.   DOI
48 Schlattl H, Zankl M, Becker J, Hoeschen C. Dose conversion coefficients for CT examinations of adults with automatic tube current modulation. Phys Med Biol. 2010;55:6243-6261.   DOI
49 1990 Recommendations of the International Commission on Radiological Protection. Ann ICRP. 1991;21:1-201.   DOI
50 Lee C, Kuzmin GA, Bae J, Yao J, Mosher E, Folio LR. Automatic mapping of CT scan locations on computational human phantoms for organ dose estimation. J Digit Imaging. 2019;32:175-182.   DOI
51 Choy G, Khalilzadeh O, Michalski M, Do S, Samir AE, Pianykh OS, et al. Current applications and future impact of machine learning in radiology. Radiology. 2018;288:318-328.   DOI
52 Lee C, Liu J, Griffin K, Folio LR, Summers RM. Adult patient-specific CT organ dose estimations using automated segmentations and Monte Carlo simulations. Biomed Phys Eng Express. 2020;6:045016.   DOI
53 Chen W, Kolditz D, Beister M, Bohle R, Kalender WA. Fast on-site Monte Carlo tool for dose calculations in CT applications. Med Phys. 2012;39:2985-2996.   DOI
54 Ding A, Gu J, Trofimov AV, Xu XG. Monte Carlo calculation of imaging doses from diagnostic multidetector CT and kilovoltage cone-beam CT as part of prostate cancer treatment plans. Med Phys. 2010;37:6199-6204.   DOI
55 Ding GX, Coffey CW. Radiation dose from kilovoltage cone beam computed tomography in an image-guided radiotherapy procedure. Int J Radiat Oncol Biol Phys. 2009;73:610-617.   DOI
56 Schlattl H, Zankl M, Becker J, Hoeschen C. Dose conversion coefficients for paediatric CT examinations with automatic tube current modulation. Phys Med Biol. 2012;57:6309-6326.   DOI
57 Xu XG. An exponential growth of computational phantom research in radiation protection, imaging, and radiotherapy: a review of the fifty-year history. Phys Med Biol. 2014;59:R233-302.   DOI
58 Valentin J. Basic anatomical and physiological data for use in radiological protection: reference values: ICRP Publication 89. Ann ICRP. 2002;32:1-277.   DOI